
: : Ballantine/31594/$9.95 in USA• $12.95 in Canada

Apple lie®
User's Handbook

Apple lie®
USER'S HANDBOOK

Weber Systems Inc. Staff

Ballantine Books • New York

This book is available to organizations for special use .
For further information, direct your inquiries to:
Ballantine Books
Special Sales Department
201 East 50th Street
New York, New York !0022

Apple lie® User's Handbook
Copyright© 1983 by Weber Systems, Inc.

All rights reserved under International and Pan-American Copy­
right Conventions. Published in the United States by Ballantine
Books, a division of Random House, Inc., New York, and
simultaneously in Canada by Random House of Canada Limited,
Toronto. This is a fully revised edition of User's Handbook to the
Apple lie Personal Computer®, originally published by Weber
Systems, Inc.

Apple lie is a trademark of Apple Computer Corporation. This book has been
neither authorized nor endorsed by Apple Computer Corporation.

Apple lie®, Apple DOS®, Applesoft BASIC®, and Integer BASIC® are trademarks
of Apple Computer Corporation .

Library of Congress Catalog Card Number: 83-91223
ISBN 345-31594-4

Manufactured in the United States of America

First Ballantine Books Edition: April 1984
10 9 8 7 6 5 4 3 2 1

CONTENTS

1. INTRODUCTION TO THE APPLE lie

History of the Apple II 11 . History or the Apple lie 11 . Typical Apple
lie System 12. Inside the Apple lie 13. Main Board 13. Expansion Slots
14. Auxiliary Slot 14. Rear Panel 15. Bits & Bytes 16. ROM & RAM
16. Dynamic & Static RAM 17. Apple lie Power Supply 17. Apple lie
Speaker 17. Apple lie Video Display 18. Monitor/TV Set Connection
18. Apple lie Video Display Formats 20. Cassette Recorder 22. Apple
lie Disk Drive 23. Hand Controls 24. Apple lie Controller Cards
24. Communications 25. Software 25. Operating Systems 26. Lang­
uage Translators 26. Applesoft BASIC 27. Integer BASIC 27. Other
Languages 27. Applications Programs 27.

11

2. APPLE lie INSTALLATION, TROUBLESHOOTING, AND OPERATION 29

Introduction 29. Installation 29. Troubleshooting 29. Built-in Self
Tests 31. Apple lie Operation 32. Apple lie Keyboard 33. Space Bar
35. Shift 35. Caps Lock 35. Cursor Control Keys 35. ESC Key 36.
Open Apple Key 36. Solid Apple Key 36. Reset Key 37.

3. APPLE BASIC PROGRAMMING 39

Introduction 39. Switching from Applesoft to Integer 39. Compiled &
Interpreted Languages 40. Immediate & Program Modes 40. Line
Numbers 41 . NEW Command 42. END Statment 42. Executing a Pro­
gram 43. Program Lines & Display Lines 43. Multiple Statement Pro­
gram Lines 43. Listing a Program 44. Error Message 45 . BASIC Pro­
gram Editing 45. Applesoft BASIC Data Types 46. Strings 46. Numeric
Data 47. Floating Decimal Point 47. Floating Point Numbers 48.
Integer 48. Scientific Notation 49. Variables 50. BASIC Variables 50.
BASIC Variable Names 51 . Tables & Arrays 52. Expressions and Opera­
tors 54. Compound Expressions and Order of Evaluation 55. Arith­
metic Operations 56. Logical Operators 59. Applesoft BASIC State­
ments 61. Remark Statements 62. Assignments 63. Outputting Data
65. INPUT Statements 67. GET 69. FOR, NEXT Loops 69. Nested Loops
71. Conditional Statements 71 . Branching Statements 72. ON, GOTO

Statement 73. Subroutines & GOSUB Statements 73. ON, GOSUB
Statements 75. Applesoft BASIC Functions 75. String Concatenation
76. ASCII 77. CHR$ & ASC Functions 77. PEEK & POKE 78. Stopping
Program Execution 79. Control-C 79. END 79. STOP 80. RESET 80.

4. APPLE BASIC REFERENCE GUIDE

Introduction 81 . ABS 82. AND 82. ASC 84. ATN 84. AUTO 85. CALL
86. CHR$ 87. CLEAR 88. CLR 88. COLOR 89. CON 90. CONT 91.
COS 92. DATA 92. DEF FN 93. DEL 94. DIM 95 DRAW 97. DSP
98. END 99. EXP 100. FLASH 100. FOR ... NEXT 101. FRE 103. GET 104.
GOSUB, RETURN 105. GOTO 106. GR 107. HCOLOR 107. HGR 108.
HGR2 109. HIMEM 110. HLIN 111. HOME 112. HPLOT 112. HTAB
113. IF ... THEN114. IN#115. INT116. INVERSE116. INPUT117. LEFT$
118. LEN 119. LET 120. LIST 120. LOAD 121. LOG 122. LOMEM 123.
MAN124. MID$124. NEW125. NORMAL 126. NOT126. NO TRACE
127. ON 128. ON ERR GOTO 129. OR 131. PDL 133. PEEK 133. PLOT
134. POKE 135. POP 136. POS 138. PRINT 139. READ 140. RECALL
141. REM 144. RESTORE 144. RESUME 145. RETURN 146. RIGHT$
146. RND 147. ROT 149. RUN 150. SAVE 150. SCALE 151. SCRN 152.
SGN 154. SHLOAD 155. SIN 155. SPC 156. SPEED 156. SQR. 157.
STOP 157. STORE 158. STR$ 158. TAB 159. TAN 161. TEXT 161.
TRACE 161. USR 162. VAL 163. VLIN 163. VTAB 164. WAIT 165.
XDRAW 166.

5. CASSETTE & DISK STORAGE WITH THE APPLE lie

Introduction 169. Cassette Installation & Operation 169. Saving and
Loading a Program on Cassette 170. Storing and Loading Data on
Cassette 171. Apple lie Disk Storage 171. Types of Disks 171. Hard
Disks 171. Floppy Diskettes 173. Tracks and Sectors 174. Hard and Soft
Sectors 176. Single and Double Sided Diskettes 178. Single, Double,
and Quad Density Diskettes 178. Diskette Write Protection 178.
Diskette Handling Rules 179. Inserting and Removing a Diskette
180. Disk Operating System 181. Disk II System 181. Installing the
Disk II System 181. Booting DOS 185. Auto Start Boot 185. Booting
from Integer or Applesoft BASIC 186. Booting from the Monitor
186. Restoring DOS 187. Using 13-Sector Diskettes with the lie 187.
Prompts 180. Error Message Format DOS Commands 189. Filenames
190. Drive Specification 190. Slot Specification 191. Volume Specifi­
cation 192. CATALOG 194. Track/ Sector List 196. INIT 197. Master
and Slave Diskettes 199. LOAD 202. SAVE 202. DELETE 203. RENAME
203. LOCK 204. VERIFY 204. MON and NOMON 205. MAXFILES
207. EXEC 208. Creating an EXEC File 209. BSAVE 210. BLOAD 210.
BRUN 211. Sequential and Random File Access 211. Opening Sequen­
tial Files 214. Writing to Sequential Files 214. Reading Sequential Files
216. Closing a Sequential File APPEND 218. POSITION 219. Storing
Data in Disk Files 221. Opening and Closing a Random Access File
223. Reading and Writing to Random Files 223. Byte Parameter 224.

6. APPLE lie GRAPHICS

Low Resolution Graphics 225. Commands 225. Uses of Low Resolu­
tion Graphics 228. Charts 228. Writing a Game Program 229. High
Resolution Graphics 232. Commands 232. Shape Table 235. Shape

81

169

225

Table Directory 240. Saving a Shape Table 243. Using the Shape Table
244. SCALE 244. ROT 244. DRAW 245. XDRAW 245. Programming
with Shape Tables 246.

7. THE SYSTEM MONITOR

Introduction 249. Activating and De-activating the Monitor 249.
Commanding the Monitor 251. Memory Examine 251 . Memory
Dump 252. Register Examine 253. Changing Memory 253. Changing
RegisteJS 255. Move Data 255. Comparing Blocks of Memory 256.
Saving.0nd Retrieving Data with the Cassette 259. Saving and Retriev­
ing Data from Disk 260. Other Input/Output Commands 261 . Mach­
ine Language Programming 263. Mini-Assembler 263. Activating the
Mini-Assembler 264. Entering the First Program Line 264. Entering
Subsequent Program Lines 265. Returning to the Monitor 265.
Converting Assembly Language Hex Codes 265. Executing a Machine
Language Program 267. Creating a Custom Monitor Command 268.
Look Up Section 269.

8. THE;80-COLUMN BOARD

Activating the 80-Column Board in BASIC 274. Deactivating the 80-
Column Board 275. Selecting 40 or 80 Columns While the Board is
Active 276. Moving the Cursor 277. Editing Functions that Clear Parts
of the Display 278. Scrolling the Display 279. Use of Control Codes
279. BASIC Support of the 80-Column Board 281 . Tabbing 281. Use of
INVERSE, FLASH, and HOME 282. Uppercase - Restrict Mode 282.

Appendix A. Applesoft BASIC Reserved Words & Tokens

Appendix B. Integer BASIC Reserved Words

Appendix C. DOS Reserved Words

Appendix D. Applesoft BASIC.Error Messages

Appendix E. Integer BASIC Error Messages

Appendix F. DOS Error Messages

Appendix G. ASCII Character Set

Appendix H. Apple Ile Printer Usage

Appendix I. Monitor Subroutines

Appendix J. System Monitor Files

Index

249

273

285

286

286

287

290

292

295

299

301

308

311

INTRODUCTION

The Apple lie User's Handbook is meant to serve as a tutorial as
well as an ongoing reference guide to the Apple lie personal
computer. The latest features of the Apple lie are discussed in
detail including the 80 column card and the new lie keyboard.

Chapter 1 of this book is intended to serve as an introduction to
the lie. The system board, expansion slots, speaker, video dis­
play, cassette recorder, disk drive, and BASIC interpreter are all
discussed in this chapter. Terms basic to computing such as
RAM, ROM, byte, bit, software, modem, operating sytem, inter­
preter, compiler, and assembler are all defined in Chapter 1.

Chapter 2 describes Apple lie installation, operation, and trou­
bleshooting. Keyboard usage is discussed in detail in this
chapter.

Chapter 3 is meant to serve as tutorial on Applesoft and Integer
BASIC programming on the lie. Topics such as BASIC start-up,
switching from Applesoft to Integer, constants, variables, strings,
arrays, operators, loops, functions, conditional statements, and
branching statements are discussed in detail. Chapter 3 assumes
the user has some familiarity with BASIC programming and is not
meant to serve as an introductory guide to programming tor the
first-time user.

Chapter 4 serves as a detaile)d reference guide to each of the
various commands and functions available in both Integer and
Applesott BASIC.

Chapter 5 includes a detailed discussion of data storage on
cassette or diskette with the Apple I le. Each of the DOS 3.3
commands are discussed in detail. Files and tile handling are also
discussed .

Chapter 6 includes a detailed discussion of programming gra­
phics on the Apple lie.

Chapter 7 describes the usage of the lle's system monitor and
mini-assembler.

Chapter 8 discusses the usage of the lle's optional 80-column
board.

The Apple lie User's Handbook includes nine useful appendices.
These detail the various Applesott, Integer, and DOS reserved
words and error messages, the ASCII code set, printer usage with
the lie, and the various monitor subroutines.

CHAPTER 1. INTRODUCTION
TO THE APPLE lie.

HISTORY OF THE APPLE II

When the Apple II computer was first introduced in the summer
of 1977, it \;\'as one of the first fully assembled microcomputers
available . The Apple II was designed by Steven Jobs and Steven
Wosniak in a garage in Los Altos, California.

From this humble beginning, the Apple II has evolved into a
complete line of microcomputers, peripherals, and software.
Apple computers can be found in homes, offices, small
businesses, and factories throughout the world . Apple
Computer, Inc. has grown into a multi-million dollar, multi­
national firm in just a few short years.

HISTORY OF THE APPLE lie

The Apple lie was introduced in the spring of 1983. The lie is a
redesigned version of the Apple II. The lie contains64K of RAM,
an expanded keyboard with 63 keys that can output both upper
and lower case characters, an optional 80-column d isplay and a
6502B CPU (a high-speed version of the original 6502) .

The Apple lie includes both Applesoft and Integer BASIC.
Applesoft BASIC is included in the ROM, and Integer is loaded
from the System Master diskette.

The lie uses the same Disk II drive used with the earlier Apple II
models. DOS version 3.3 is used with the lie.

*Although this book is dedicated to the Apple lie, the majority of the concepts
apply to the Apple II as well.

12 Apple lie Users Handbook

TYPICAL APPLE lie SYSTEM

A typical Apple lie system is depicted in Illustration 1-1. Your
Apple lie system may not include the exact components
pictured in Illustration 1-1. However, every Apple lie system
must include at least two of the components shown in Illustration
1-1--the Apple lie computer and a monitor or television set.

We will discuss the Apple lie first, followed by the various
peripherals that can be connected to this basic Apple lie system.
These peripherals include a monitor or TV set, cassette recorder,
Apple lie Disk Drive, printers, and the various Apple controllers
or cards.

Illustration 1-1. Typical Apple lie System

Introduction to the Apple lie 13

Inside the Apple lie

The Apple lie consists of the 65028 microprocessor, RAM
memory, ROM memory, slots for the connection of controller
cards, a power supply, a speaker, game 1/0 connectors, a video
connector, a cassette interface, and a keyboard all enclosed in a
protective case. The inside of the Apple lie is shown in
Illustration 1-2.

Main Board

Once you have 9pened your Apple lie you w ill notice a large
green printed circuit board at the bottom of the open com­
partment. This board is known as the main board. The main
board contains the various IC chips and components that control
the Apple I le.

Illustration 1-2. Inside of the Apple lie

1. Internal Power-On Light 2. Expansion Slots 3. 65028 M icroprocesspor 4.
Power Supply 5. Auxiliary Slot with 80 Column Board 6. Memory 7. Speaker

14 Apple lie Users Handbook

Perhaps the most important component on the main board is the
65028 microprocessor. As shown in Illustration 1-2, the 65028
microprocessor is located in the center of the main board just
below the seven slots. The 65028 is a high speed version of its
predecessor, the 6502. The 6502 was used in the Apple II and II
Plus. The 65028 can address 64K of RAM. However, the lie has
incorporated special memory banking and switching techniques
to allow more than 64K to be addressed .

Several other important components of the main board are
depicted in Illustration 1-2. These include an AY.;;3600 integrated
circuit and a ROM chip that are used to encode the keyboard
characters. The main board also includes two ROM chips that
contain the Applesoft BASIC interpreter.

The main board contains an MMU integrated circuit which
controls memory addresses within the lie, and an IOU integrated
circuit which controls the built-in input/output features of the
lie.

Eight RAM IC chips are located at the bottom right of the main
board. These supply the lie with 64K of RAM.

Expansion Slots

Towards the rear of the main board are located seven expansion
slots. These slots allow additional hardware devices to be
installed with the Apple lie. For example, an expansion card is
available that enables the lie to run the CP/M operating system.
Also, controller cards must be installed in these slots to enable a
printer or disk drive to be used with the lie.

Notice that these seven slots are numbered from 1 through 7. In
the Apple II, eight slots (numbered 0 through 7) were available.

Auxiliary Slot

Notice the large expansion slot located on the left side of the
main board . This is known as the auxiliary slot. If your lie
contains the 80-column text option, the 80 column text card will
be installed in this slot.

Introduction to the Apple lie 15

Rear Panel

The bottom left-side of the rear panel of. the Apple lie (see
Illustration 1-3) contains a 9-pin D-connect6r for the installation
of hand controls, two phone jacks for the installation of a
cassette recorder, and an RCA type jack for the installation of a
video monitor.

The bottom right-hand side of the lle's rear panel contains the
AC cord socket and an on/off switch. Both of these are
connected to the power supply.

Finally, note the rectangular openings along the lle's rear panel.
These openings are numbered from 1-12. When the lie is
connected to one or more peripheral devices using an interface
card, that card's connector is attached to the proper opening.
Openings 1through4 are used for 19-pin connections; 5,6,8 and
9 are used for 9-pin connections; and 7, 10, 11, and 12 are used
for 25-pin connections.

Illustration 1-3. Apple lie Rear Panel

6

1. Video Monitor Jack 2. Cassette Recorder Input/Output Jacks 3.
9-pin D-Connector 4. Rectangular Openings 5. AC Cord Socket 6.
On/Off Switch.

16 Apple lie Users Handbook

Bits & Bytes

Microprocessor logic is based upon the bit. A bit is the basis of all
information storage within the computer. A bit consists of a
simple switch that can consist of either of the two binary states,
on or off.

Bits are often separated into groups of eight. These groups of 8
bits are known as a byte. A byte is required to represent a single
character (i.e. letter, number, or symbol). Generally, bytes are
processed by the computer in groups of 2.

Most of the 8-bit microprocessors can only address (or work
directly with) 65,535 (64K) bytes at any one time. Even though this
number appears large, a 30 page document would fill this
memory area. The Apple lie uses an 8 bit microprocessor.
However, due to the usage of special memory banking and
switching techniques, the lie can address over 64K of memory.

Most 16-bit microprocessors can address from 65535 to 16
million bytes of memory. Moreover, 16 bit microprocessors
process data at a speed from 2 to 10 times faster that 8-bit
microprocessors. The IBM Personal Computer is an example of a
computer that uses a 16 bit microprocessor.

ROM and RAM

ROM stands for Read-Only Memory. ROM will hold the data
stored in it permanently. If the power to the Apple is shut off, the
information stored in ROM will remain there. As previously
mentioned, the Apple's BASIC language interpreter is stored in
ROM.

RAM stands for Random Access Memory*. Any data stored in
RAM is lost when the Apple's power is shut off. When data is

* Random Access Memory is a somewhat misleading term to
describe RAM, as most memory (including ROM) is randomly
accessed.

Introduction to the Apple lie 17

loaded from a tape cassette, a disk drive, or the keyboard, it is
stored in RAM. For example, when a program is loaded from the
Apple Disk II , it will be stored in RAM.

Dynamic and Static RAM

There are two different types of RAM memory; dynamic RAM
and static RAM. Dynamic RAM can only hold the data it is storing
for a few milliseconds. Therefore, any data being stored in
dynamic RAM must constantly be rewritten or refreshed. This
dynamic RAM refresh function must be a part of the support
logic when the dynamic RAM memory is designed.

Static RAM is more expensive than dynamic RAM. However,
once data has been written into static RAM, it will be retained as
long as power is supplied.

Apple lie Power Supply ~

The Apple lle's power supply is located on the left side of the
inside of the unit as shown in Illustration 1-2. The power supply
will supply four voltages: +Sv, -Sv, +12.0v, and -12v.

The Apple's main power cord plugs into the power supply on the
back of the Apple. The Apple's power-on switch is also located
on the back of the power supply. This is pictured in Illustration
1-3.

Some Apple's have a power supply with a switch which allows
the user to select either 110 or 220 volts.

Apple lie Speaker

As pictured in Illustration 1-2, the Apple I le's speaker is located
inside the case on the lower left hand side. The speaker is
connected to the Apple so that a program can be used to create
sounds on it.

The Apple lle's speaker is controlled by a soft switch. Soft
switches have two states (ex. in/out; on/off; text/graphics). By
addressing a special memory location associated with the soft
switch, a program can change the state of the switch.

18 Apple lie Users Handbook

It is unimportant what data values are actually read from or
written into the memory address associated with a soft switch. It
is the reference to that address that throws the switch. The data
written to or read from the location has no effect.

Machine language programs should reference the hexadecimal
value for the memory address associated with the soft switch.
BASIC programs should use a read operation to the decimal
value for the memory address associated with the soft switch. A
write operation causes such a short pulse that the speaker will
not emit a sound.

The memory address for the soft switch associated with the
speaker is 49200 or hexadecimal C030H. Whenever this address is
referenced in a program, the speaker will emit a small click. By
continually referencing this address, the speaker will generate a
continuous tone.

APPLE lie VIDEO DISPLAY
Monitor/TV Set Connection

The Apple lie can either use a monitor or a regular TV set for
video output. The connection between the lie and a monitor is
simple. Merely use a video cable to connect the video port on the
rear of the lie to the video input port on the monitor. This
connection is depicted in Illustration 1-4.

The connection between the lie and a TV set is somewhat more
complicated due to the fact that the lle's video signal must be
converted to a signal that can be comprehended by the TV set. A
device known as an RF modulator must be installed in the lie in
order to convert the lle's video signal. The RF modulator is
generally connected to a group of four Molex-type pins on the
rear right-hand side of the main board.

A switch box is also generally connected to the VHF terminals of
the TV set's antenna box. This switch box enables the TV set to be
operated normally in one setting; while in the second setting, it
serves as the lle's video output device. The installation of the TV
switch box is depicted in Illustration 1-5.

Introduction to the Apple lie 19

Modulators are also available which can be connected directly
to the VHF terminals in the TV set's antenna. If this type of
modulator is directly connected to the TV set, a cable can be run
from the video out port on the rear of the lie to the modulator to
make the proper connection.

Illustration 1-4. Apple lie/Monitor Connection

\
1. Video Cable Connector

Illustration 1-5. Apple lie/TV Set Connection

20 Apple lie Users Handbook

Apple lie Video Display Formats

The lie can display the following four types of video output :

40-column text mode.
80-column text mode (with optional 80-column card).
Low-resolution graphics (40 x 48 with 16 colors) .
High-resolution graphics (280 x 192 with 6 colors) .

In the text mode, the lie has the capability to display 24 lines with
40 or 80 columns per line. The characters in the 80 column mode
are only half as wide as those in the 40 column mode. For this
reason, the 80 column text mode generally cannot be used with a
regular color or B&W television set as the resultant output is so
blurred that it'is unreadable. A high-resolution video monitor
must be used to obtain clear output in the 80-column text mode.

In the text mode, any of the 96 ASCII characters can be displayed
including lower and upper-case letters numbers, and symbols.
The text characters are generally displayed as white dots on a
black background. However, text characters can also be display­
ed as black characters on a white background. This type of
display is known as the inverse format.

Each ind ividual character is displayed on a matrix seven dots
wide by eight dots high . The character itself is only five dots
wide. This leaves one blank dot on either side of the character.
Therefore, a total of two rows of blank dots are allowed between
characters. With the exception of lowercase characters with
descenders characters are created seven dots high. This leaves
one blank line of dots between characters.

Two different character sets are available in the text mode: the
primary character set and the alternative character set. The
characters themselves are identical in each character set. How­
ever, the format in which the characters are displayed differs.
The following formats are available :

normal - white dots on black background.
inverse - black dots on a white background .
flashing - alternating between normal and inverse .

Introduction to the Apple lie 21

In the primary character set, the I le can display uppercase
characters in either the normal, inverse or flashing formats .
Lowercase letters can only be displayed in the normal format.

In the alternative character set, the ti ashing tor mat tor uppercase
and lowercase letters is unavailable. However, the normal and
inverse tor mats tor both upper and lowercase letters is available.
The alternative character set is used when the 80-column card is
active.

In low resolution graphics, the lie can display 1920 blocks of data
within an array that measures 48 blocks high by 40 blocks wide .
Each block can be assigned any one of the following 16 different
colors available with low resolution graphics.

Black
Magenta
Dark Blue
Purple
Dark Green
Grey 1
Medium Blue
Light Blue

Brown
Orange
Grey 2
Pink
Light Green
Yellow
Aquamarine
White

No empty space exists between blocks. Therefore, if a group ot
several adjacent blocks are assigned the same color, they will
appear as a single mass.

High resolution graphics consists of 53,760 dots in 280 dot wide
by 192 dot high array. The dots used in high resolution graphics
are the same size as the dots used to make up characters in the
text mode.

The following six colors are available in the high resolution
graphics mode :

black blue
white green
orange purple

Every dot in high resolution graphics can either be black, white,
or one of the colors. However, every color is not available for
every dot in high resolution graphics.

22 Apple lie Users Handbook

In either low or high resolution graphics, the user can include 4
lines of text at the bottom of the display. In low resolution
graphics, these 4 lines of text replace the final 8 rows of blocks. In
high resolution graphics, they replace the lower 32 rows of dots.
These display modes which contain bdfh text and graphics
characters are known as mixed modes.

Cassette Recorder

Your Apple lie can be connected to a cassette recorder via the
cassette interface . The cassette recorder can be used to store
programs ,or data transferred from RAM. These programs or data
later can be transferred back into RAM.

The cassette interface jacks are located on the rear of the I le. The
cassette interface jacks can be used to connect the Apple to a
standard cassette tape recorder. The tape recorder can be used
as a data storage device for the Apple.

The two cassette interface jacks are labeled with iltustrations.
The output jack is labeled with a picture of an arrow pointing
towards a cassette . The input jack is labeled with a picture of an
arrow coming from a cassette.

The cassette input jack should be connected to the cassette
recorder's earphone or monitor output jacks. The input jack will
listen to the tones on the cassette tape, translate those tones into
data , and then store them in memory.

The OUT or output jack should be connected to the cassette
recorder's microphone input jack. The output jack is connected
to a soft switch just as the Apple speaker is. The cassette's output
jack soft switch memory address is 49184 (-16352 Integer BASIC).
By referencing this address, the voltage at the output jack will be
varied, causing a tone to be produced on the tape. By altering
the pitch and duration of this tone, data can be recorded on the
cassette tape. ·

An Apple lie/cassette recorder hook up is pictured in Illustra­
tion 1-6. The cassette recorder will be covered in more detail in
Chapter 5.

Introduction to the Apple lie 23

Illustration 1-6. Apple lie Hookup to Cassette Recorder

1. Output Jack 2. Input Jack

Apple II Disk Drive

A floppy disk system is a much more efficient means of data
storage than is a cassette recorder system. The name of the
floppy disk system used by the Apple lie is the Disk II. The Disk II
system includes a disk drive, disk controller card, and a cable
used to connect the disk controller card to the disk drive. (see
Illustrations 5-8 and 5-9).

The Disk I l's controller card is installed in one of the expansion
slots in the lle's main board. The Disk ll's operation and
programming will be discussed in detail in Chapter 5.

Printers

A printer can be connected to the Apple I le either via a serial
interface card or a parallel interface card . The type of card used
depends on whether the printer being connected is a serial or
parallel device.

24 Apple lie Users Handbook

Data may be sent from the computer to the receiving device
(printer or video display) in two different manners; serial and
parallel. In parallel communications, the 8 bits representing a
character are all sent at one time to the receiving device. In serial
communications, each of the 8 bits are sent one at a time to the
receiving device. Generally, printers use parallel communication.

A wide range of printers are available for use with the Apple lie.
The printer interface card can be installed in slots 1-7 in the main
board. Generally, openings 7, 10, 11, or 12 on the rear of the lie
are used for the installation.

The use a printer with the Apple lie will be covered in greater
detail in Appendix H.

Hand Controls

The 9-pin connector in the lle's rear panel is generally used for
the installation of hand controls such as game paddles, a j9ystick,
etc.

A Game 1/0 Connector is also available on the main board (see
Illustration 1-2). Controllers using a 16-pin connection can be
attached via the connector.

Apple lie Controller Cards

Earlier in this chapter, we mentioned the seven plug-in slots on
the Apple's main board. The slots were designed to accept
special circuit boards known as controllers or cards.

Cards are available for a number of different applications. For
example as we mentioned previously, a parallel or serial
communications card is required to install a printer on your
Apple lie. Controller cards are required for installing a disk drive
with you Apple lie.

Introduction to the Apple lie 25

A number of other cards are also available for the Apple lie.
These include communications cards which allow you to con­
nect you Apple lie to a modem, which in turn allows your Apple
to accept data transmitted over telephone lines. Cards are also
available which convert digital signals to analog and vice versa.
Finally, cards are also available that allow the Apple lie to run
under an operating system completely different from Apple
DOS known as CP/M

Communications

The Apple lie can communicate with another Apple computer
located a few miles away or a few thousand miles away. A device
known as a modem, your telephone, and telephone lines allow
this communication to take place.

A modem converts signals generated by the lie into signals
which can be transmitted over telephone lines. A modem will
also reconvert the signals transmitted over phone lines back into
a signal which can be understood by the lie.

Generally, a modem is connected to the lie using a Super Serial
Card. Once the Super Serial Card has been installed (in slots 1-7),
connect the card to the modem. Then, connect the modem to
your telephone.

A modem allows the user to access one of the many available
information services. Examples of these information services include
Compuserve, The Source, and the Dow Jones News and Quotes
service. A modem also allows communications with other
Apples.

SOFTWARE

Software can be described as the instructions or programs that
cause the computer to operate. Several different classifications
of software exist for the performance of different functions.
These can be classified as operating systems, languages, and
applications programs.

26 Apple lie Users Handbook

Operating Systems

An operating system can be defined as a group of programs
which manage the overall ~ operation of the computer. The
operating system performs system operations such as controlling
data input/output, memory assignments, etc.

The standard operating system supplied with the lie with a disk
drive is DOS 3.3. DOS stands for disk operating system.

There are several other operating systems available for the lie.
The most well-known of these is CP/M. To install CP/M, a Z80
peripheral card must be installed in slot 7 of the I le. The Z80 card
contains a Z80 microprocessor. The Z80 is necessary to run
CP/M.

Language Translators

Programs are generally written in a high-level language that is
different from the instructions the computer uses. A program
known as a language translator must be used to translate the
high-level language into' a form that the computer can compre­
hend.

There are three categories of language translators: interpreters,
compilers, and assemblers.

A compiled language program consists of the source code and
the compiled code. The source code consists of the program
statements in their original form. For example, the following is a
line of source code from a program written in the CBASIC
compiled language :

100 INPUT " ENTER TODAY'S DATE:"; DATE.1

The source code is processed by a program known as a compiler
into the compiled code. The compiled code is very similar to the
machine language used by the microprocessor. The compiled
code is the code actually used when a compiled program is run .
A program known as a run-time monitor is used to run the
compiled program. s

Introduction to the Apple lie 27

An interpreted language consists of only the source code. The
source code is translated line-by-line directly into machine
language instructions. The Applesoft BASIC language that is
standard on the lie is an interpreted language.

An assembler translates program instructions one by one into
instructions that the CPU can comprehend.

Applesoft BASIC

The most widely used language on the lie is Applesoft BASIC.
Applesoft BASIC is resident in ROM in the lle's main board.
Applesoft BASIC is a floating point language. This allows it to
process both very large and very small numbers.

Integer BASIC

Integer BASIC is automatically loaded into RAM when the
system is booted from the DOS 3.3 System Master diskette.
Unlike Applesoft BASIC, Integer BASIC does not have the
capability to process numbers with decimal portions.

Other Languages

A number of other languages are available for the lie including
PASCAL, FORTRAN, Logo, PILOT, and 6502 Assembly Language.

Applications Programs

Applications programs are those written to accomplish a specific
task. Examples of applications programs include word proces­
sing programs, electronic spread sheets, data base systems, and
accounting programs. Generally, applications programs are
stored on cassette or diskette and are transferred into RAM,
where the program is available to the computer.

Some of the more popular applications programs available for
the lie include:

28 Apple lie Users Handbook

Database:

Electronic
Spreadsheets:

Word
Processors:

PFS: The Personal Filing System
DB Master
Quick File II

Visicalc
Plan 80

Wordstar
Apple Writer

CHAPTER 2. APPLE lie INSTALLATION,
TROUBLESHOOTING, AND OPERATION

INTRODUCTION

In this chapter, we will explain in detail steps involved in
installing the Apple lie. We will then outline a few trouble­
shooting hints for the lie. Finally, we will discuss lie operation.

INSTALLATION

The first step in installing the lie is to position the console on a
flat desk or table near a household AC outlet.

The next step is to connect the AC power cable to the power
cord outlet on the rear of the I le. Then, connect the other end of
the AC power cable to a household outlet. Turn the power
switch (on the lle's rear panel) to the on position. If the
connection was properly made, the lie should power on.

You are now ready to install a monitor or TV set as described in
Chapter 1. Be certain to turn off the lle's power switch and
unplug the power cord prior to making this connection.

TROUBLESHOOTING

Table 2-1 contains a number of hints that may be able to help
you isolate any problems should your I le not function properly.

30 Apple lie Users Handbook

Table 2-1. Apple lie Troubleshooting Hints

Symptoms of
Problem

Apple lie powers
on, but cursor does
not appear.

Apple lie will not
power on.

Program will not
load from cassette
recorder.

SYNTAX ERROR
message.

Possil:>le Solution

Be sure that the video display is
plugged in and turned on.
Check the display's contrast and
brightness controls. If the pre­
ceding solutions do not solve
the problem, disconnect all peri­
pherals from the lie except the
display and run the lle's self tests
(explained later).

Check to be sure that the power
cord is properly connected to
both the lie and to the wall
outlet. Be sure that the wall
outlet is receiving power.

Check the cassette tape to be
sure that it has been rewound.
Also, check the cable connec­
tion between the recorder and
the lie. Check the volume set­
ting on the cassette recorder.
Finally, certain recorders do not
work well with the lie. If you
suspect this to be the problem,
try another recorder.

This is generally due to the incor­
rect entry of an Applesoft or
Integer BASIC command. Be
carefu I not to use lower-case
characters in reserved words.

Apple lie Installation, Troubleshooting and Operation 31

Table 2-1. Apple lie Troubleshooting Hints (con't.)

Symptoms of

Problem Possible Solution

Must Boot From Slot The PASCAL operating system
6 message. must be booted with the system

diskette in drive 1-which must
be attached via slot 6. If nee-
essary, reinstall the disk control-
ler in slot 6.

Disk drive's in use Check to be certain · that the
light remains on. drive's door is closed. Try pres-

sing Ctrl-Reset to stop the
drive.

Drive emits weak If a card is installed in the auxil-
sounds while iary slot, the disk controller card
rotating. should not be installed in slot 3.

Reinstall the disk controller
card in a different slot.

Disk drive Be sure the diskette being used
occasionally rattles was properly formatted . Be cer-
during operation. tain that the disk was properly

inserted into the drive.

Built-In Self Tests

The lie contains a series of built-in self-tests designed to evaluate
the operation of the unit's internal circuitry. These tests do not
check the operation of any devices attached to the lie.

To begin the self-test, press the Solid Apple and Ctrl-Reset keys
simultaneously. Release Ctrl-Reset first followed by the Soli.cl
Apple key.

The self-tests require approximately 20 seconds of execution
time. During the self-tests, patterns will move across the screen.
Upon successful completion of the tests, the following message
should appear on the screen:

32 Apple lie Users Handbook

KERNEL ON

If any other message appears, the lie requires servicing.

APPLE lie OPERATION

The lie is started up by booting DOS (abbreviation tor disk
operating system) from the System Master diskette. The System
Master diskette is included with your Apple lie Disk II drive and
is labeled "DOS 3.3 System Master." You can either use that
diskette or a copy to start up the I le. It is recommended that once
you learn diskette copying procedures (see Chapter 5), you use a
copy of the System Master diskette tor everyday I le operations.

To insert the diskette, open the drive door to drive 1. The System
Master must be inserted in drive 1. This is the drive attached to
the controller card in slot 6. Insert the System Master diskette
into the drive with its label facing up. The label side should be
nearest your hand and the side of the diskette with the oval slot
should be inserted into the drive. Once the diskette is in place,
close the drive door.

Next, power on the monitor connected to the lie. Then, power
on the lie itselt by pressing the toggle switch located at the rear
of the unit next to where the power cord plugs into the machine.
The lie will beep, the disk drive will spin, and the drive light will
blink on and ott as DOS is loaded. The green power light to the
lett ot the open Apple key will also be lighted and the display
depicted on page 33 will appear on the monitor.

The symbol] is the Applesoft BASIC prompt. When the symbol
appears, the user can enter either Applesott BASIC or DOS
commands.

Apple lie Installation, Troubleshooting and Operation 33

APPLE II
DOS VERSION 3.3 SYSTEM MASTER

JANUARY 1, 1983
COPYRIGHT APPLE COMPUTER, INC 1980,1982

Apple lie Keyboard

The Apple I le keyboard is depicted in 1llustration2-1 . The Apple
lie keyboard is arranged differently than the keyboard on the
Apple II or II Plus.

First of all, the lie contains 12 additional keys. These new

Illustration 2-1. Apple lie Keyboard

_,•llHlll!U" lilllLLill•l••11111 I I L ' I I I 1111

34 Apple lie Use~s Handbook

keys include:

DELETE
TAB
CAPS LOCK

+
t
Open Apple Function Key
Solid Apple Function Key
Special Charaoter Keys

The REPT key on the Apple II and II Plus has been replaced with
an auto-repeat feature in the I le. The auto-repeat feature causes
all printing characters to automatically repeat if the key is held
down longer than a second or two.

The Apple lie keyboard allows the user to send any one of 128
ASCII characters to the computer. Of these 128 characters, 96 are
printing characters, That is, they will be echoed on the screen
when entered at the keyboard. The printing characters include:

26 lowercase letters
26 uppercase letters (output with caps lock or shift
depressed)
10 numerics
34 special characters

The non-printing characters consist of the 32 control characters.
The control characters are output by simultaneously pressing the
Control key with a second key (generally a letter).

S~veral of the control codes can also be output via special keys
on the lie keyboard. For instance, the same control code that is
output by Ctrl-M is also output by the Return key. Therefore, the
ASCII return code (ASCII 13 decimal) can be produced in two
separate ways.

As a general rule, the printing characters are used for outputting
information, while the control characters are used to instruct the
system to perform some function.

Apple lie Installation, Troubleshooting and Operation 35

We will discuss the more important keys on the lie keyboard in
more detail in the following sections.

Space Bar

The space bar (located at the bottom of the lie keyboard)
generates the space character (ASCII 32 decimal). Be certain to
include the space character where specified in DOS or BASIC
commands.

Shift

The Shift key causes the uppercase character to be output for the
key being pressed. There are two Shift keys on the lie keyboard,
one on the left and one on the right side of the keyboard.

Caps Lock

The Caps Lock key is located just below the Shift key on the
left-hand side of the keyboard. When the Caps Lock key is on
(depressed), all alphabetic keys will be output as uppercase
characters. No other keys will be affected. This allows the user to
output only uppercase letters, while still being able to enter
numbers.

Once Caps Lock is on (depressed), it can be turned off by
pressing the key a second time. When the key is pressed, it clicks
back into the up position.

Cursor Control Keys

The cursor control keys can be used to move the cursor around
the screen. The cursor control keys are described below:

Left-Arrow

Right-Arrow

Moves the cursor one position
to the left.

Moves the cursor one posi­
tion to the right.

36 Apple lie Users Handbook

Down-Arrow

Up-Arrow

Tab

Return

ESC Key

Moves the cursor down by
one line.

Moves the cursor up by one
line. (ESC key must first be
pressed.)

Moves the cursor to the next
tab setting. Tabs generally are
set after every eight char­
acters. This key only functions
with certain programs (gener­
ally word processing soft­
ware).

Moves the cursor to the be­
ginning of the next line.

The ESC key outputs the control code for ESC (ASCII 27 decimal).
The ESC key is often used to either place the computer in the
escape mode or to enter an escape sequence.

Open Apple Key

The Open Apple key appears to the left of the space bar. The
Open Apple key can be used to restart the I le when it has already
been powered on. This is accomplished by pressing the Open
Apple key simultaneously with Ctrl-Reset.

Pressing the Open Apple key also has the same effect as pressing
the button on game controller #0. The Open Apple key can be
used as an alternative to pressing the game controller.

Solid Apple Key

The Solid Apple key is located to the right of the space bar. The
Solid Apple key when pressed simultaneously with Ctrl-Reset
starts the Apple lle's built-in self-test. ·

The Solid Apple key also has the same effect as pressing the
button on game controller #1.

Apple lie Installation, Troubleshooting and Operation 37

Reset Key

The Reset key is located to the right of the Delete key on the right
hand side of the lie keyboard. Pressing Ctrl-Reset causes
execution of most lie programs to stop.

CHAPTER 3.
APPLESOFT BASIC PROGRAMMING

INTRODUCTION

BASIC is the most widely used personal computer programming
language with the Apple I le being no exception. The I le includes
two different versions of BASIC; Applesoft and Integer. Apple­
soft BASIC is contained in ROM and will be active when the I le is
started up. Integer BASIC is loaded from the System Master
diskette when DOS is booted.

Applesoft BASIC is a floating point language. This allows
Applesoft to handle numbers with decimal portions, as well as
extremely large and small numbers expressed in decimal
notation.

Integer BASIC can only deal with integers. Obyiously, Applesoft
is a more practical version of BASIC then Integer. For this reason,
our discussion of BASIC programming will be centered around
Applesoft BASIC.

Switching from Applesoft to Integer & Vise Versa

As mentioned in the preceding section, Applesoft BASIC will be
active when the lie is started up. If you wish to switch to Integer
BASIC, enter INT via the keyboard. The Integer BASIC prompt
(>) will appear.

If you wish to switch back to Applesoft BASIC, enter FP via the
keyboard. The Applesoft BASIC prompt (]) will appear.

40 Apple lie Users Handbook

Compiled & Interpreted Languages

The conversion from a high level language to machine language
is either done with an interpreter or a compiler. A compiler is a
program that converts an entire high level program to machine
language. A compiler performs a complete translation of the set
of instructions before the program is actually executed. An
interpreter converts each instruction to machine language as the
program is executed.

A compiled language such as CBASIC executes programs very
quickly. However, an interpreted language such as Applesoft
BASIC is easier to use, because it does not need to be compiled.
Unfortunately, interpreted languages require more time to
execute because each instruction must be translated into
machine language as the program proceeds.

Immediate & Program Modes

The immediate mode is also known as the direct or the calculator
mode. In the immediate mode, most BASIC command entries
result in the instructions being executed without delay. For
example, if the following immediate mode line was entered :

PRINT "JIM SMITH"

the following would be displayed on the video screen:

JIM SMITH

In the program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution.
This stored program is executed when the appropriate
command (generally RUN) is entered.

Illustration 3-1 contains an example of the entry of a program in
the program mode and its execution.

Applesoft BASIC Programming 41

Illustration 3-1. Program Mode Entry & Execution

Line Numbers

] NEW
] 10 PRINT "JIM SMITH"
] 20 PRINT "1220 EUCLID AVE"
] 30 PRINT "CLEVELAND, OH 44122"
] 40 END
]RUN
JIM SMITH
1220 EUCLID AVE
CLEVELAND, OH 44122

l

In the program mode, program lines must begin with a line
number. A line number is a one through five digit number
entered at the beginning of a program line. The line number at
the beginning of a program line is the only difference between it
and an immediate mode line.

No two line numbers can be the same. If the same line number is
used more than once in a program, the line most recently
entered will replace the original.

The execution sequence of a BASIC program is determined by
the value of its line number. The lowest line numbers will be
executed first, followed by program lines with higher line
numbers. Even if program lines are not arranged in sequential
order, the Applesoft BASIC interpreter will place the lines in the
correct order.

42 Apple lie Users Handbook

Adding program lines to a program stored in RAM is very easy.
Just type in the line number followed by the program line. The
line will be inserted in the program in the position indicated by
its line number. For eicample, by adding the following line to the
program in lllustratio'n 3-1:

35 PRINT "216-777-5579"

the phone number for Jim Smith will be displayed on the line
following his city, state, and zip.

Program lines can be deleted by typing the line number to be
deleted followed by Return. For example, the following entry:

30

would result in line 30 being deleted.

Program lines can be changed by merely retyping the new line.
The existing line in the lle's memory will be replaced with the
new line. For example, the following entry:

10 PRINT "THOMAS HILL"

would result in "THOMAS HILL" being output rather than "JIM
SMITH" in the program Illustration 3-1.

NEW Command

You may have noticed the execution of the NEW command in
Illustration 3-1. The NEW command is used to erase an old
program from memory before a new one is typed in.

The lie can only store one program in RAM rat any one time. If
you attempt to enter a new program while another program is
already stored in RAM, the new program will be merged with the
existing program.

END Statement

Notice the last line in the program in Illustration 3-1 . That line
consists only of the line number plus the BASIC reserved word
END.

Applesoft BASIC Programming 43

The END statement identifies the end of a program, and instructs
BASIC to return to the immediate mode. Obviously, the END
statement should be the last line in your program.

Actually, Applesoft BASIC does not require an END statement.
When the program's final statement is executed, it will end.
However, it is good programming practice to end a BASIC
program with the END statement. Integer BASIC does require an
END statement.

Executing a Program

A program is executed in the program mode by entering the
RUN command. This is shown in Illustration 3-1. Every time RUN
is executed, the program will be re-executed. As previously discussed,
in the immediate mode, each program line will be executed
when the Return key is pressed.

Program Lines & Display Lines

A display line can be defined as one row on the video display. A
program line is regarded by the BASIC interpreter as one line,
regardless of the number of display lines it occupies on the
screen. The end of a program line is signalled when the Return
key is pressed. Program lines are generally limited to 255
characters.

Multiple Statement Program Lines

A statement can be defined as an instruction to the computer.
The terms statement and command are often used interchange­
ably. Most programs consist of a large number of statements.

The following are examples of statements:

PRINT "TIM GREGORY"
070 DIM A(15)
100 C=2*B

44 Apple lie Users Handbook

Every statement in Applesoft BASIC must contain at least one key
or reserved word. A keyword ident ifies the calculation , decision,
input, or output function to be performed. The keywords are
described individually in Chapter4 and are listed in alphabetical
order in Appendices A and B.

In addition to keywords, numeric constants, string constants,
variables, and special symbols may appear in a BASIC statement.
These are known as the statement parameters.

Applesoft BASIC allows the user to place more than one
statement on a single program line. Multiple statements must be
separated with a colon (:). The following is an example of a
multiple statement program line :

10 A= B *?:PRINT B

Listing a Program

As mentioned earlier, the LIST command can be used to display
program lines currently stored in RAM . Remember, if the NEW
command is issued, the program in RAM will have been erased,
and can no longer be displayed by LIST.

LIST is used in the following configuration :*

LIST [line 1 - line 2]**

where line 1 is the line number of the first line to be listed, and
line 2 is the line number of the last line to be listed.

*In this book, a standard format will be used to describe BASIC
keyword configurations. The keyword will be displayed in our
regular type style in upper case. Parameters will be displayed in
our italic type style in lower case. Optional parameters will be
enclosed in brackets.

** This option is only available in Applesoft. A comma may be
substituted for the hyphen.

Applesoft BASIC Programming 45

LIST can be used without any parameters to list the entire
program. LIST can also be used with a single line number to list
just that program line. If LIST is used with the following format:

LIST line 1-

line 1 and all subsequent lines will be listed.

If LIST is used as follows:

LIST -line 2

line 2 and all lines preceding it will be listed.

In certain situations (especially when a long program is being
listed, you may wish to cancel or temporarily halt a program
listing. With the lie, you can cancel an Applesoft program listing
by pressing Ctrl-C.

A program listing can be stopped temporarily by pressing Ctrl-S
and resumed by pressing the space bar.

Error Messages

When the lie encounters a statement w ith an error, an error
message will be displayed. The error message will be displayed in
the following formats :

? SYNTAX ERROR -Applesoft BASIC
***SYNTAX ERROR-Integer BASIC

The various Applesoft and Integer BASIC error messages are
described in Appendices D and E.

BASIC PROGRAM EDITING

In our discussion of the lie keyboard, we mentioned several of
the keys used in editing. These include :

- used to backspace the cursor.
-used to move the cursor foward .

46 Apple lie Users Handbook

t used to move the cursor up.
~ used to move the cursor down.

The following keys and key combinations can also be used in
editing :

Ctrl-X
Esc-@

Esc-A or K
Esc-B or J
Esc-C or M
Esc-D or I
Esc-E
Esc-F

erases the current line.
clears the display and homes the
cursor.
moves the cursor to the right.
moves the cursor to the left.
moves the cursor down one row.
moves the cursor up one row.
erases text tram cursor to end ot line.
erases text from cursor to end of text
windows.

Once Esc I, J, K, or M has been pressed, the lie will be in the edit
mode. In the edit mode, it will no longer be necessary to press
Esc with I, J, K, or M to move the cursor. The cursor can be moved
by pressing I, J, K, or M. The edit mode can be ended by pressing
any key except I, J, K, M, Ctrl, or Shift.

APPLESOFT BASIC DAT A TYPES

Data can be classified under two major categories: text and
numeric. Text data consists of characters. These characters are
generally used within strings.

Examples of numeric data include:

Integers
Floating Point Numbers
Scientific Notation

Each of these data types will be discussed in the following
sections.

STRINGS

A string consists of one or more characters enclosed within
double quotation marks. The following are examples of strings:

Applesoft BASIC Programming 47

"F. SCOTT FITZGERALD"
"149 LEXINGTON AVE"
"NEW YORK, NY 10017"

"212-349-9879"

Notice that a string can contain both letters, numbers and
~ymbols. Any string containing numbers cannot be used in a
mathematical operation, unless it is first converted into numeric
data. String to numeric data conversion is covered later in this
chapter.

NUMERIC DAT A

The lie can use either of two types of numeric data-integers and
floating point numbers. Integers do not have a decimal portion
while floating point numbers can have a decimal portion.

Applesoft BASIC can process both integers and floating point
numbers while Integer BASIC can only process integers.

Floating Decimal Point

With floating decimal point numbers, a decimal point is always
assumed. Any number of digits can be placed on either side of
this decimal point. Even with numbers with no decimal position,
a decimal point always is assumed following the number's last
digit.

Floating point numbers of up to 9 digits can be used with
Applesoft BASIC. For example, the following entry of a nine digit
floating point number:

PRINT .566666666

would generate a nine digit display. If a 10 digit floating point
number was entered:

PR I NT .5666666666

the last digit would not be displayed and the number would be
rounded as follows: ,.-i

48 Apple lie Users Handbook

.566666667

Commas may not be included within numeric data. For example,
109000 would be a valid number in Applesoft BASIC while
109,000 would be invalid.

Floating point numbers include both integers, as well as numbers
with decimal positions. The following are examples of floating
point numbers:

-.0789
5

77.39
0

+.000001
67.98

Negative floating point numbers should be preceded with the
minus sign (-) . Positive floating numbers can optionally be
preceded with the plus sign (+), however, a floating point
number is assumed positive if it doesn't have a sign.

Integer

An integer is a number without a decimal position. Integers can
either be positive or negative. The following are examples of
integers:

-1134
0
1
-1

17945
+32

Integers can range from -32768 to +32767. Negative integers are
preceded with the (-) sign . Positive integers can be preceded
with the(+) sign, although integers without a(+) sign are assumed
to be positive.

Applesoft BASIC Programming 49

Scientific Notation

Applesoft BASIC uses scientific notation to express either
extremely large or extremely small numbers. A number in
scientific notation takes the following format:

±x E + yy

Where;

± is an optional plus or minus sign.

x can either be an integer or floating point number.
This value is know as the coefficient or mantissa.

E stands for exponent.

yy is a one or two digit exponent. The exponent gives
the number of places that the decimal point must be
moved to give its true location. The decimal point is
moved to the right with the positive exponents. The
decimal point is moved to the left with negative
exponents.

The following examples specify a number in both standard
floating point and scientific notation:

1000000 -. 1 E6
.000001 -. 1 E-6

57500000-. 5.75 E+07
-.00000479-. -4.79 E-06

Any integers containing 10 or more digits will be expressed in
scientific notation as shown in the following example.

PRINT 121212121212
1.21212121 E+11

50 Apple lie Users Handbook

Notice that the _decimal portion of the preceding example
contains 8 digits of precision . Applesoft will round any additional
digits.

Applesoft can only handle numbers expressed in scientific
notation in the following range :

Largest floating point number-+1.70141183E+38
Smallest floating point number_..+2.93873588E-39

If a larger number is encountered, the following error message
will be displayed .

OVERFLOW ERROR

Any numbers smaller than that allowed will be assigned a value
of 0.

VARIABLES

So far, we have only discussed data constants. A constant can be
defined as a fixed value. The following are examples of string and
numeric constants.

"JACK NOVET"
" 375"
27.59
0
100000

A name can be used to express data as well as a constant.
Variables are used to express data as a name.

BASIC Variables

A variable can be defined as a quantity that can assume any one
of a group of values. Variables are represented by variable
names. These consist of a letter followed optionally by additional
letters and/or numbers. The value assumed by a variable is
subject to change, depending upon the program statement
being executed. For example, in the following:

Applesoft BASIC Programming 51

100 LET A= 5.0
200 LET B = 7.0
300 LET A= A+ B

the variable A is initially assigned a value of 5.0 and Bis assigned a
value of 7.0. In line 300, the variable A is assigned a new value
equal to the sum of variables A and B, which is 12.0. The previous
value of A is erased.

BASIC Variable Names

Applesoft BASIC allows any group of up to 238 characters to be
used as a variable name--as long as the first character of the
group is a capital letter of the alphabet, and as long as the
variable name does not duplicate a reserved word (see Appen­
dices A & B). Examples of reserved words are:

LfT~ GOTO, IF, READ, DATA

The following are exa.mples of valid Applesoft BASIC variable
names: .;

i
'

A '\

B23456
DOT
A2

JOHN
N4N
B%
N

While the following are invalid variable names:

2BB7 END
1A FOR
PRINT COS

All of the preceding examples of valid variable names should be
used to represent numeric data. Variable names can also be used
to represent string data. These are known as string variables.
String variable names consist of a valid variable name followed
by the dollar sign ($) . The following are examples of valid string
variable names.

52 Apple lie Users Handbook

A$
ZIP$
A7$

NED$
MOP$
N222$

A distinction can also be made among numeric variable names
between floating point variable names and integer variable
names. In the following example, A1 is used to represent a
floating point number, while A% represents an integer.

100A1=1.75:A% = A1 * 2
200 PRINT A1 , A%
RUN

1.75 3

Notice that only the integer value of A% is output. The decimal
portion is dropped or truncated as A% can only accept integer
values.

Keep in mind that although Applesoft allows variable names of
up to 255 characters, only the first 2 alphanumeric characters are
recognized by the interpreter. In other words, the following
variable names would be identified as being identical by the
Applesoft interpreter.

TELLER
TENNIS
TENNESSEE

However, the special symbols which identify the variable type
(i.e.$,%) differentiate among variables with identical 2 character
names. The following variable names would all be identified as
unique by the Applesoft interpreter.

TABLES & ARRAYS

TE%
TE
TE$

Earlier in this chapter, we introduced the concept of variables. A
variable is designed to hold a single data item--either string or

Applesoft BASIC Programming 53

numeric. However, some programs require that hundreds or
even thousands of variable names be used.

Obviously, the use of thousands of individual variable names
could prove extremely cumbersome. To overcome this problem,
BASIC allows the use of subscripted variables. Subscripted
variables are identified with a subscript, a number appearing
within parentheses immediately after the variable name. An
example of a group of subscripted variables is given below :

A(O), A(1), A(2), A(3), A(4), .. . , A(100)

Note that each subscripted variable is a unique variable. In other
words, A(O) differs from A(1), A(2), A(3) , A(4), etc.

Subscripted variables should be visualized as an array (or table) .
In our previous example, the data contained in the array defined
by A would consist of one row with 101 columns in it. Such an
array is a single-dimension array.

In Applesoft BASIC, arrays of up to eleven*elements can be used
as needed in a program. Arrays which contain more than eleven
elements must first be identified via the Dimension (DIM)
statement. When an array is dimensioned, BASIC will reserve an
area in memory for that array's elements. The following
Dimension statement will dimension a numeric array of 16
elements.

100 DIM B(15)

More than one array can be defined with a single DIM
statement. This is shown in the example below:

100 DIM Z(S,2), B(100), C(2,3)

*An array of eleven elements would contain the subscripts 0
through 10 inclusive. For example, an array dimensioned as A(10)
would have eleven elements A(O) through A(10) inclusive.

54 Apple lie Users Handbook

A DIM statement should appear in a program before the array
variable it is dimensioning appears. If an array variable is used in
a program before it is dimensioned, the Bad Subscript error may
occur.

An array can also consist of two dimensions. Such an array is
known as a two-dimensional array (or table). An example of an
array of 4 rows and 3 columns is shown in Illustration 3-2.

A two-dimensional array contains two subscripts. The first
subscript contains the row location, while the second subscript
contains the column location . The subscripted variable A(1,0)
identifies the darkened area in the array shown in Illustration
3-2.

Illustration 3-2. Two-Dimensional Array

Columns
0 1 2

0

1
Rows

2

3

Expressions and Operators

The values of variables and constants are combined to form a
new value through the use of expressions. The following are
examples of expressions.

4+7
A$+ B$
3*2
14<21
XANDY

Applesoft BASIC includes several types of expressions including
arithmetic, relational, and Boolean. In our previous examples,
the first three examples are arithmetic expressions, while the

Applesoft BASIC Programming 55

fourth and fifth are examples of relational and Boolean expres­
sions respectively. Each of these types of expressions will be
discussed in detail in the following sections.

The sign or phrase describing the operation to be undertaken is
known as the operator. The operators in our previous example
were as follows:

+
+
*

<

AND

The constants or variables which are affected,by the operator are
known as operands.

Compound Expressions and Order of Evaluation

All of our preceding examples were simple expressions. A simple
expression is one which contains just one operator and one or
two operands. Simple expressions can be combined to form
compound expressions. The following are examples of
compound expressions.

(A+B)*7-4
(A+ B) AND (C + D)
IF A= 1ANDB=1THENC=1

With compound expressions, it is necessary that the computer
knows which operation should be undertaken first. Applesoft
BASIC follows a standard order of evaluation within compound
expressions. This order is outlined in Table 3-1 .

Note that parentheses have the highest precedence level. In
other words, any expression enclosed within parentheses will be
evaluated first. If more than one set of parentheses appears in an
expression, these will be evaluated from left to right.

One pair of parentheses can be used to enclose an operator
enclosed within another set. In such an instance, Applesoft

56 Apple lie Users Handbook

BASIC will evaluate the expression within the innermost set of
parentheses first, followed by the next innermost set, etc.

Table 3-1. Order of Evaluation

Operator Description

Parentheses () Used to alter order
of evaluation.

/\ Exponentiation
- Unary Minus

Arithmetic * Multiplication
Operators I Division

+ Addition
- Subtraction

- Equal To
<:::::.. Not Equal To

Relational "' Less Than
Operators > Greater Than

<= Less Than or Equal To
>=

Greater Than or
Equal To

Boolean NOT Logical Complement
Operators AND Logical AND

OR Logical OR

When expressions have the same order of evaluation, they will
be evaluated in order from left to right within the compound
expression.

Arithmetic Operations

The symbols used for addition, subtraction, multiplication,
division, and exponentiation are known as arithmetic operators
in BASIC. The symbols + and - are used for addition and
subtraction respectively. The asterik (*) is used to indicate
multiplication, while the slash (/) is used to indicate division .

Applesoft BASIC Programming 57

When a + or - sign precedes a number, the symbol is used to
specify that number's sign. When + or - is used to change a
number's sign, that usage is known as a unary operation. Unary
operators can be used to change the sign of a numeric constant
or variable as shown below:

100 LET A= -A

When unary operators are used in the manner shown above, the
unary operation is regarded as an arithmetic operation.

The term arithmetic expression is used to describe the use of an
arithmetic operator with numeric constants and/or variables.
The following are examples of arithmetic expressions.

x + y + 70
100/A + B
3000. 10+1

Exponentiation is the process of raising a number to a specified
power. For example, in the following,

AS

the numeric variable A would be evaluated as:

A*A*A*A*A

In Applesoft BASIC, exponentiation is indicated with the caret
arrow symbol,A .

Exponentiation can be used in an arithmetic expression as shown
below:

The preceding expression would evaluate to 73.

58 Apple lie Users Handbook

A relational operation evaluates to either true or false. For
example, if the constant 1.0 was compared to the constant 2.0 to
see whether they were equal, the expression would evaluate'to
false. In Applesoft BASIC, a non-zero value represents a condi­
tion of true, while a value of 0 represents false.

The only values returned by a comparison in BASIC ar~ 1 (true)
or 0 (false) . These values can be used as any other integer would
be used. The following results are generated by the following
relational expressions.

5 > 7 -o (false)
3 = 3 - 1 (true)

2 < > 2 - 0 (false)
(2 = 2) * 4 -4

(1 > 7)+7-7

The first three examples are easy enough to understand. In the
fourth example, the relational expression (2=2) is evaluated first
as true or 1. Th is resu It is then multiplied by 4 with a product of 4
as the result. In the fifth example, the relational expression (1 >7)
evaluates as false or 0. This result is added to 7, with the result
being 7.

Relational operations using numeric operations are fairly straight­
forward . However, relational operations using string values may
prove confusing to the first-time computer user.

Strings are compared by taking the ASCII value for each
character in the string one at a time and comparing the codes.

If the strings are of the same length, then the string containing
the first character with a lower code number is the lesser. Blank
spaces are counted in string comparisons and have the ASCII
value of 32.

Applesoft BASIC Programming 59

The following comparisons between strings would all evaluate as
true.

"ABC"=" ABC"
"ABC ">"ABC"
"BAA" > "AAA"
" ALFRED" < "ALFREDO"
A$ < Z$ where A$=" ALFRED" and Z$=" ALFREDO"

Note that all string constants must be enclosed in quotation
marks when used as constants.

Logical Operators

Logical or Boolean operations are generally used in BASIC to
compare the outcomes of two relational operations. Logical
operations themselves return a true or false value which will be
used to determine program flow.

The logical operators are NOT (logical complement), AND
(conjunction), and OR (disjunction). These are best explained
with a simple analogy. Suppose that Steve and Sherry were
shopping in the produce department of their grocery store. If
they decided to collectively purchase an item if either of them
individually wanted that item, they would be acting under the
OR logical operator.

Now, suppose that Steve and Sherry decided that they would
only purchase an item if they both wanted that item. They would
then be acting under the AND logical operation.

Now, suppose that Sherry was angry with Steve. If Sherry
decided not to purchase the items that Steve wanted , she would
be acting under the NOT logical operation . The NOT, AND, and
OR logical operators are summarized in Illustration 3-3.

A logical operator evaluates an input of one or more operands
with true or false values. The logical operator evaluates these
true or false values and returns a value of true or false itself. An
operand of a logical operator is evaluated as true if it has a
non-zero value. (Remember, relational operators return a value

60 Apple lie Users Handbook

of +1 for a true value.). An operand of a logical operator is
evaluated as false if it is equal to zero.

The result of a logical operation is also a number, which if
non-zero is considered true, and false if it is zero.

The following are examples of the use of logical operators in
combination with relational operators in decision making.

IF X >10 OR Y<O THEN 900
IF A>O AND B>O THEN 200
B=-1 :PRINT NOT B

In the first example, the result of the logical operation will be
true if variable X has a value greater than 10 or if variable Y has a
value less than 0. Otherwise, it will be false. If the result of the
logical operation is true, the program will branch to line 900.
Otherwise, it will continue to the next statement.

In the second example, the result of the logical operation will be
true only if the value of both variables A and Bare greater than
zero. If the result of the logical operation is true, program
control will branch to line 200. Otherwise, program control will
branch to the next line.

In the third example, Bis set to a value of-1 (true). The value of
NOT B is then printed. This will be 0 or false.

Illustration 3-3 contains tables that may prove of help when
evaluating program statements using logical operators in
combination with relational operators.

Applesoft BASIC Programming 61

Illustration 3-3. Logical Operators

NOT Operation

T I F

F I T

A Operand

NOTA

AND Operation

T T

T F

T F

F

T

F

F

F

F

A Operand

B Operand

A AND B

OR Operator

T T

T F

T T

F

T

T

F

F

F

A Operand

B Operand

AOR B

APPLESOFT BASIC STATEMENTS

In the next several sections, we will discuss many of the more
commonly used statements in Applesoft BASIC. These include
the following:

Remark Statements
Assignment Statements
Output Statements
Input Statements
Loops
Conditional Statements
Branching Statements
Subroutines
Applesoft BASIC Functions

62 Apple lie Users Handbook

Remark Statements

Remark statements are used to include a programmer's
comments within a program. It is good programming practice to
include numerous Remark statements in your programs. Not
only do Remark statements make your programs easier for
others to understand, they also help you remember your
program's logic.

Remark statements consist of a line number, the reserved word
REM, and the programmer's comment. An example of a Remark
statement is given below.

100 REM Initialize 1 to 0

Remark statements are ignored by the Applesoft BASIC inter­
preter, but are included in program listings.

In multiple line statements, the REM statement must be the final
statement. The Applesoft BASIC interpreter ignores all text
following the keyword REM.

Assignment Statements

Assignment statements were discussed briefly earlier in this
chapter. Assignment statements are used to assign values to
variables. The following are examples of assignment statements.

100 LET A= 7
200 B = 42
300 NA$= " PHIL"
400 X=1: Y=2:Z=3

Notice that the keyword LET is optional. Generally, LET is
assumed. Both string and numeric variables can be assigned
values with an assignment statement. Also, multiple assignment
statements can be included in a single line, as long as each of the
individual statements is separated with a colon.

Applesoft BASIC Programming 63

DAT A, READ Assignment Statements

Assigning values to a large r.iumber of variables with individual
assignment statements could prove very cumbersome. The
DAT A, READ statement can be used to assign values to a large
number of variables. The following is an example of a DAT A,
READ statment.

100 DAT A 100, 500, 1000, "JACK"
200 READ A, B, C, D$

The DAT A statement creates a list of constant values known as a
DAT A list. The items in the DAT A list are assigned sequentially to
the variables: in the READ statement. A DAT A list is depicted in
Illustration 3-4.

DAT A statements may contain numeric or string values. These
values must be separated or delimited with commas. DAT A
statements may appear at any point in the program. No other
statements can appear in the same program line with a DAT A
statement.

The DAT A list uses a pointer to indicate which value within the
list is to be assigned to the next variable in a READ statement.
Before the first READ statement is encountered, the DAT A list
pointer will point to the first value in the DAT A list . As values
from the DAT A list are assigned to variables in the READ
statement, the pointer will move sequentially to each successive
item in the DAT A list.

The values from the DAT A list must match the type of variable to
which they are assigned in the READ statement. In other words, a
string value cannot be assigned to a numeric or vice versa.

64 Apple lie Users Handbook

Illustration 3-4. DAT A List

100 DAT A 100, 200, 300, 400, 500

400 DATA MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY

500
600
700

READ A, B, C, D, E........._ DATA List
RESTORE "'-400,600-
READ F, G, H, I, J A F

I 4

B G

C H

0
900 READ A$, B$, C$, D$, E$

\-~~ E-~o J

~A$

400,600 DATA list pointer position
after the execution of lines 400 and 600.

500,700 DATA list pointer position
after the execution of lines 500 and 700.

900 DAT A list pointer position after
execution of line 900.

B$

C$

D$

E$
900-

100

200

300

400

500

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY

The RESTORE statement is used to reset the DAT A list. In
Illustration 3-4, note the use of the RESTORE statement. After
DATA list values have been read into A, B, C, D, and E in line 500,
a RESTORE statement is executed. This causes the DAT A list
pointer to be reset to the beginning of the DAT A list.

Applesoft BASIC Programming 65

Outputting Data

In some of our preceding examples, we touched upon the use of
the PRINT statement to display data. The PRINT statement can be
used to display both numeric and string data.

The following program statement,

100 PRINT "VENDOR LIST"

would display the following at the current cursor position:

VENDOR LIST

The first item in a PRINT statement is displayed at the cursor's
current location.

When the Apple lie is used on the40column mode, two or more
data items could be output to the screen by separating these
items with commas in the PRINT statement. Upon encountering
a comma as J delimiter, PRINT will output the next item at the
next tab stop. In Integer BASIC, tab stops are set at columns 1, 9,
12, 25, and 33. In Applesoft BASIC, tabs are set at columns 1, 16,
and 33.

When the Apple lie is used in the 80-column mode, only two
tab stops are present. In Integer BASIC, the tab stops are located
at columns 1 and 9. In Applesoft, they are located at columns 1
and 17.

The following examples illustrate the use of the comma with
PRINT in the 40 and 80 column modes.

Integer 40 Column
> PRINT 1,2,3,4,5,6

1 2 3 4 5
6

Applesoft - 40 Column
] PRINT 1,2,3,4,5,6
1 2 3
4 5 6

66 Apple lie Users Handbook

*Integer 80 Column
> PRINT 1,2,3,4,5,6
1 6

*Applesoft - 80 Column
] PRINT 1,2,3,4,5,6
1 6

A semicolon can also be used to separate the items in a PRINT
statement. A semicolon causes the next item in the PRINT
statement to be displayed immediately after the preceding item.
Unlike the use of the comma in a PRINT statement, when
semicolons are used to separate items, no blank spaces appear
between string or numeric values.

When a PRINT statement has finished execution, the cursor
moves to the left margin of the following line. This is known as a
carriage return/line feed.

If a comma or semicolon occurs at the end of a PRINT statement,
the carriage return/line feed will be suppressed. If a comma is
placed at the end of the PRINT statement, the next PRINT
statement will begin output at the next print zone after the last
item is displayed. If a semicolon is placed at the end of the PRINT
statement, the next PRINT statement will begin output
immediately following the last item displayed.

In this section, we have only discussed sending output to the
video display. Output can also be sent to the printer. This is
accomplished by executing the PR# statement prior to PRINT.

The usage of PR# to send data to the printer is discussed in
Appendix H.

*In the 80 column mode, each comma causes the subsequent
value to be displayed in the second tab position. In our
examples, 2,3,4,5, and finally 6 were successively displayed in
the second tab position.

Applesoft BASIC Programming 67

INPUT Statements

Data can be input into the computer while a program is being
executed. This is accomplished with the INPUT statement.
For example, when the following statement is executed:

100 INPUT A

the computer will display a question mark and wait for the
operator to eriter a response. That entry will be assigned to the
variable A. The entry must be ended by pressing the Enter key.
Program execution will then resume.

The values of several numeric variables can be input with a single
INPUT statement as shown in the example below.

200 INPUT X, Y, Z

When the preceding INPUT statement is executed, the INPUT
prompt(?) will I be displayed. The operator should then enter the
data items for X, Y, and Z. Each input should be separated by a
comma. The Return key should be pressed after all input entries
have been made. An example of a valid entry for the preceding
INPUT statement is given below.

100, 200, 300 [Ret)*

Caution should be used when inputting string data. Be certain
that your string entries do not contain a comma unless enclosed
in quotation marks. A comma will be interpreted by Applesoft
BASIC as a delimiter. Any data appearing after the comma will be
treated as a separate INPUT statement data item.

• [Ret) indicates pressing the Return Key.

68 Apple lie Users Handbook

For example, in the following program;

100 INPUT A$, B$
200 PRINT A$, B$
RUN
? SMITH, JOHN, JONES, TED
?EXTRA IGNORED
SMITH JOHN

A$ would be assigned "SMITH", and B$ would be assigned
"JOHN". "JONES" and "TED" would be ignored as the error
message (?EXTRA IGNORED) illustrates.

Therefore, when inputting a string item, be certain a comma
does not appear within that string.

The variable type used with INPUT should be of the same type as
the data input. String data cannot be input into numeric
variables. If this does occur, the error message ?REENTER will
appear, and the operator will be prompted for a new entry. If a
real number is input for an integer variable, the decimal portion
of the real number will be truncated. If numeric data is input for
a string variable, that data will be interpreted as a string and
cannot be used in calculations.

It is good programming practice to include a prompt message in
conjunction with the INPUT statement to remind the operator
what data the computer is expecting. The prompt should be
enclosed within quotation marks after INPUT. The prompt
should be followed by a semicolon* and the variable or variables
into which data is to be input. The prompt message will be
displayed on the screen followed by the ? prompt. An example
of an INPUT statement with a prompt is given as follows.

100 INPUT "CUSTOMER NAME ";A$
200 PRINT A$

* In Integer BASIC, the prompt is followed by a comma.

Applesoft BASIC Programming 69

GET

Applesoft's GET statement allows a single character to be input
via the keyboard . That character is not displayed on the screen.
Also, the return key need not be pressed after the entry has been
made. The following program illustrates the usage of GET.

70
90

100
" 130

140
150
950
999

PRINT " IF YOU WISH TO STOP-ENTER Y"
PRINT "OTHERWISE, PRESS ANY KEY"

/

GETZ$
IF Z$ = "Y" GOTO 950
PRINTZ$
GOTO 70
PRINT "PROGRAM ENDS':
END

If a string variable is used with GET, t he character entered will be
treated as a string value. If a numeric variable is used with GET,
the character entered must be q. number. If a non-numeric
character is entered, the SYNTAX ERROR message will appear
and the program will end.

FOR, NEXT Loops

Suppose t~iat you needed to compute the squares of the integers
from 1 to 20. One way of doing this is by calculating the square

~ for each individual integer as shown below.

100 A=1A2
200 PRINT A
300 B = 2A2
400 PRINT B
500 c = 3/\2
600 PRINT C

70 Apple lie Users Handbook

However, this method is very cumbersome. This problem could
be solved much more efficiently through the use of a FOR, NEXT
loop as shown below.

100 FOR A= 1 TO 20
200 X=AA2
300 PRINT X
400 NEXT A
500 END

The sequence of statements from 100 to 400 is known as a loop.
When the computer encounters the FOR statement i~ line 100,
the variable A is set to 1. X is then calculated and displayed in
lines 200 and 300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A is incremented
by 1 (to 2) and then compared to the value appearing after TO.
Since the value of A is less than that value, the loop will be
executed again with the value of A set at 2.

The loop will continue to be executed until A attains a value
greater than 20. When this occurs, the statement following the
NEXT statement will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not included with the FOR statement,
the index variable will be incremented by 1 every time the NEXT
statement is executed.

STEP can be included at the end of a FOR statement to change
the value by which the index variable is incremented. The
integer appearing after STEP is the new increment. For example,
if our preceding example were changed as follows,

100 FOR A = 1 TO 20 STEP 2
200 X=AA2
300 PRINT X
400 NEXT A
500 END

Applesoft BASIC Programming 71

the index variable A would be incremented by 2 every time the
NEXT statement was executed.

Nested Loops

One loop can be placed inside another loop. The innermost
loop is known as a nested loop. The following program contains
a nested loop.

50 DIM R (2,3)
100 DAT A 10, 20, 30, 40, 50, 60
200 FOR I = 1 TO 2
300 FOR J = 1 TO 3
400 READ R (l,J)
450 PRINT R (l ,J)
500 N.EXT J
600 NEXT I

Our preceding example is used to read data into the numeric
array R.

One error that you should take care to avoid when using nested
loops is to end an outer loop before an inner loop is ended.

Conditional Statements

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF, THEN statement to take
advantage of the computer's decision making ability. The IF,
THEN statement takes the following form:

IF expression THEN statement or line number

The IF statement sets up a question or a condition. If the answer
to that question is true, the statement or line number following
THEN is executed. If the answer is false, all instructions following
THEN are ignored, and program execution will resume with the
next line number in the program.

In the following example, if 1 is input for X, the Y is set equal to 1.
Otherwise, Y's value remains 0.

72 Apple lie Users Handbook

Branching Statements

20 INPUT X
50 y = 0

100 IF X = 1 THEN Y = 1
200 PRINT X: PRINTY

Branching statements change the execution pattern of programs
from their usual line by line execution in ascending line number
order. A branching statement allows program control to be
altered to any line number desired. The most commonly used
branching statements in BASIC are GOTO and GOSUB.

GOTO takes the following format:

GOTO line number

For example, the following program statement,

500 GOT0999

999 END

would branch program control at line 500 to line 999.

Branching statements are often used in conjunction with con­
ditional statements. In such a situation, the normal execution of
the program is altered depending upon the outcome of the
condition set up in the IF statement. This is shown in the
following example.

100 INPUT "ENTER THE AMOUNT ";A
200 IF A= 0 THEN GOTO 900
300 PRINT A
400 GOTO 100
900 INPUT "FINISHED ";B$
910 IF B$ = "N" THEN 100
999 END

Applesoft BASIC Programming 73

In our preceding example, if the value input for A has a zero
value, then the program will branch to line 900 where the
operator will be prompted whether he has finished entering
data. In line 910, the program will set up a condition where if the
input was 'N', the program will branch to line 100. If the entry was
not equal to 'N', the program will continue to line 999 where it
will end. ~

Note in line 910 that a GOTO statement is not used to precede
the line number being branched to. When a line number is
indicated following a THEN statement, the computer does not
require the presence of GOTO, which is" assumed.

ON, GOTO Statement

The ON, GOTO statement is a combination of a conditional
statement and a branching statement. The use of the ON, GOTO
statement is illustrated in the following program.

10 INPUT A
20 ON A GOTO 40, 50
30 GOTO 99
40 PRINT "A= 1": GOTO 99
50 PRINT "A= 2"
99 END

If the variable or expression following ON evaluates to 1,
program control branches to the first line number specified after
GOTO; if 2, to the second; if 3, to the third, etc.

If the variable or expression evaluates to a number greater than
the number of line numbers following GOTO, program control
will branch to the statement immediately following the ON,
GOTO statement. This is also the case if the variable or
expression following ON evaluates to zero.

Subroutines & GOSUB Statements

Many times you will find that the same set of program instructions
are used more than once in a program. Re-entering these
instructions throughout the program can be very time con-

74 Apple lie Users Handbook

suming. By using subroutines, these additional entries will be
unnecessary:-

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as
many times as desired.

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for the GOSUB statement is as
follows.

GOSUB line number

The computer will begin execution of the subroutine beginning
at the line number indicated. Statements will continue to be
executed in order, until a RETURN statement is encountered.
Upon execution of the RETURN statement, the 1computer will
branch out of the subroutine back to the first line following the
original GOSUB statement. This is illustrated in the following
example.

Illustration 4-5. BASIC Program With a Subroutine

10 INPUT"PAY TO THE ORDER OF ";A$
20 INPUT "CHECK AMOUNT ";X
30 IF X = 0 THEN 200
40 IF X < 0 THEN GOSUB 100
50 IF X > 1000 THEN G,OSUB 100
60 IF (X > 0) AND (X < 1000) THEN PRINT A$,X
70 GOTO 10

{
100 PRINT "NOT VALID A'10UNT"

Subroutine 110 INPUT "TRY AGAIN ' \ X
120 RETURN
200 END

Subroutines can help the programmer organize his program
more efficiently. Subroutines also can make writing a program
easier. By dividing a lengthy program into a number of smaller
subroutines, the complexity of the program will be reduced.
Individual subroutines are smaller and therefore more easily
written. Subroutines are also more easily debugged than a
longer program.

Applesoft BASIC Programming 75

ON, GOSUB Statement

The ON, GOSUB statement is very similar in nature to the ON,
GOTO statement. The fqllowing statement is an example of an
ON, GOSUB statemen1)

100 ON X GOSUB 1000, 2000, 3000

If the value of Xis 1, the subroutine at line 1000 is executed. If Xis
2, the subroutine at line 2000 is executed. If Xis 3, the subroutine
at line 3000 is executed. If X evaluates to 0 or to a number greater
than 3, the statement immediately following the ON, GOSUB
statement will be executed.

If ON, GOSUB causes a branch to a subroutine, program control
will revert to the line immediately following the ON, GOSUB
statement, once the subroutine has been executed.

Applesoft BASIC Functions

Functions are used in Applesoft BASIC to perform predefined
calculations or operations on their arguments. All functions use
the following format.

function (argument)

function is the keyword for the function. argument is a variable,
constant, or expression which is to be stored in the operation
defined by the function.

The following statement is an example of the use of the SQR
function.

100 A= SQR(49)

In this example, A would evaluate at 7. SQR is the keyword which
describes the square root function. The square root of 49 is, of
course, equal to 7.

Functions can be used with arithmetic, relational, and Boolean
expressions, as shown in the following statement.

76 Apple Ile Users Handbook

100 X = 100- 7 * SQR(49)

In an expression containing functions as well as arithmetic,
relational, and/or Boolean operators, the function's value is
calculated first. In our preceding example, the square root of 49
would be calculated, that value would be multiplied by 7, and
the product subtracted from 100.

Applesoft BASIC also includes a number of functions for
performing operations on strings. These include:

LEFT$
MID$
RIGHT$

These functions can be used to extract one or more characters
from ,a string.

The various Applesoft BASIC functions are described in Chapter
4.

String Concatenation

The addition operator (+) can be used to JOln together or
concatenate two strings. When concatenating strings, re­
member that the maximum length of a string in Applesoft BASIC
is 255 characters.

The following program illustrates string concatenation.

100 A$= "JOHN"
200 B$ ="BILL"
300 C$ = A$ + B$ \
400 PRINT C$
500 END
RUN
JOHNBILL

The subtraction operator (-) cannot be used to separate a
portion of a string.

Applesoft BASIC Programming 77

ASCII "------

The lie cannot store characters; it can only store numbers.
Before characters can be stored, they must be converted to
numbers. Computers use special numeric codes to store char­
acters. Most microcomputers use a code known as ASCII
(American Standard Code for Information Interchange).

The codes used by the lie are listed in AppendixG. These codes
can be activated by including them with the CHR$ function with
a PRINT statement. For example, the following:

PRINT CHR$(56)

would cause the number 8 to be output on the display.

CHR$ & ASC Functions

As mentioned earlier, characters are represented with ASCII
codes. Applesoft BASIC's CHR$ function can be used to translate
an ASCII code to its equivalent character. The following short
program illustrates the use of the CHR$ function.

100 PRINT CHR$(54)
200 PRINT CHR$(55)
300 END
RUN
6
7

The CHR$ function is often used to represent characters in a
statement, when that character can not be represented in its text
form. For example, in the following program,

100 PRINT CHR$(34); "JOHN JOHNSON"; CHR$(34)
200 END
RUN
"JOHN JOHNSON"

quotation marks are specified in the PRINT statement using their
ASCII code and the CHR$ function.

78 Apple lie Users Handbook

The ASC function returns the ASCII code equivalent for its string
argument. If this string is longer than one character, the ASC
function returns the ASCII code for just the first character in the
string.

The following program illustrates the use of the ASC function:

100 A$= "JOHN JOHNSON"
200 PRINT ASC(A$)
300 END
RUN
74

PEEK AND POKE

The PEEK and POKE statements allow direct access to the lle's
memory. The argument of PEEK and POKE indicates the address
in memory to be accessed. Every memory location can store a
number in the range 0 through 255.

The PEEK function allows the user to examine the value stored in
the memory location named as its argument. For example, in the
following statement.

100 N = PEEK (1000)

the value stored at memory location 1000 will be assigned to the
variable N.

The POKE statement is used to place a value in a specified
memory location. POKE uses the following configuration,

POKE address, value

where the value specified is placed in the location given in
address. value and address can either be constants or variables.
For example, in the following statement,

100 POKE 2000, X \

the value stored in variable X will be POKE'd into memory
location 2000.

Applesoft BASIC Programming 79

STOPPING PROGRAM EXECUTION

A number of different methods are available for stopping
program execution on the lie. These will be discussed in the
following sections.

Control-C

A program can be stopped by pressing the Control and C keys
simultaneously. If Control-C is pressed in response to an INPUT
statement prompt, the Return key must be pressed after
Control-C to stop execution.

When program execution is stopped by pressing Ctrl-C, the
following message will be displayed (in Applesoft BASIC):

' BREAK IN line number

The line number will be the line number where the program
execution was stopped. Program execution can be resumed by
entering CONT.

In Integer BASIC, the following message will be displayed when
program execution is 'Stopped using Ctrl-C.

STOPP~D AT line number

Again, line number indicates the l~ne where program execution
was stopped. Program execution can be resumed by typing in
CON.

END

The END statement can be used to stop program execution.
Progam execution can be resumed once END has been executed
by entering CONT. In Integer BASIC, program execution cannot
be resumed once END has been executed.

80 Apple lie Users Handbook

STOP

When a STOP statement is executed in Applesoft BASIC,
program execution is halted, and the following message is
displayed.

BREAK IN line number

Program execution can be resumed by e~tering CONT.

RESET

Pressing CONTROL-RESET will also stop execution ot a program.

CHAPTER 4.
APPLE BASIC REFERENCE GUIDE

INTRODUCTION

In this chapter, we will provide descriptions of the various
commands, statements, and functions used in Applesoft and
Integer BASIC.

The following rules and abbreviations will be followed in this
· chapter in our configuration descriptions of the various BASIC
commands, statements, and functions.

1. Any capitalized words are keywords.

2. Any words, phrases, or letters shown in lowercase italics
identify an entry that must be made by the operator (unless
enclosed within brackets).

3. Any items enclosed in brackets [] are optional.

4. An ellipsis(...) shows that an item may be repeated as often
as desired.

5. Any punctuation marks, except the square brackets (ex.; ,
=) must be included where they are shown.

• Except [Ret].

82 Apple lie Users Handbook

• Applesoft
ABS • Integer

The ABS function returns the absolute value of the argument. A
number's absolute value is its value without regard to sign.

Configuration

ABS(argument)

The argument can be any numeric expression or numeric
constant. In Integer BASIC, the numeric constant must be an
integer.

Example

10 A= ABS(-1 * 7)
20 PRINT A, ABS(2.99)
]RUN [Ret]
7 2.99

In the preceding example, the absolute values of -7 and 2.99 are
returned.

• Applesoft
AND • Integer

AND is a lo~ical math operator. This reserved word is generally
used to compare two numeric expressions in the context of an IF,
THEN statement.

Configuration

expression1 AND expression2

expression1 and expression2 are Boolean expressions. If an
expression was numeric (not zero), that expression would
evaluate as true. For example, if an expression evaluated to 5,

Apple BASIC Reference Guide 83

AND would treat it as true. The following is the truth table for
AND.

x y XANDY

true true true
true false false
false true false
false false false

In both Applesoft and Integer BASIC, a true is represented by a 1
and false by a 0.

10 A= 2
20 B =3

Example 1

30 IF (A= 2) AND (B = 3) THEN 60
40 PRINT" AND FAILED LOGICAL TEST"
50 GOTO 70
60 PRINT "AND PASSED LOGICAL TEST"
70 END
]RUN [Ret]
AND PASSED LOGICAL TEST

In the preceding example, line 30 first tested the value of A. Since
A was set equal to 2 in line 10, the first expression was evaluated
as true. The value of B was then tested. It too evaluated as true.
Using the logical AND table, if expression1 and expression2
evaluated to true, then the whole AND expression evaluated as
true. The program will then execute the THEN portion of the
statement and will branch to line 60. At line 60, the message AND
PASSED LOGICAL TEST was displayed.

Example 2

PRINT (3=1+2) AND (- 5)
1

In this example, 3 is set equal to 1 + 2, so the first expression

84 Apple lie Users Handbook

evaluates as true. The second expression (-5) is non-zero, so it is
also evaluated as true. According to the AND truth table, if both
expressions evaluate as true, then the whole expression is true.
Applesoft and Integer BASIC represent true as 1, so a 1 is printed.

• Applesoft
ASC • Integer

The ASC function returns the ASCII code for the first character in
its argument.

Configuration

ASC(argument)

argument can be any string variable or constant.

Example

]A$ ="A"

]PRINT ASC(A$), ASC("DEF")
65 68

In the preceding example, the character in the string A$ was A.
A's ASCII equivalent is 65. In the second string, the first character
D will be used as the argument. A value of 68 is returned for the
ASCII value of D.

I

/ ii Applesoft
ATN o Integer

The ATN function is a trigonometric function that returns the
arctangent of its argument.

Apple BASIC Reference Guide 85

Configuration

ATN(argument)

The argument can be a numeric expression or numeric constant
in radians. The value returned will be the primary angle

TT TT (- 2 < angle <2)

Example

10 Pl= ATN(1) * 4
20 PRINT Pl, ATN(TAN(.2))
]RUN [Ret]
3.14159266 .2

In the preceding example, the arctangent of 1 returns the value
TTl4. Multiplying this value by 4 returns the value indicated.

In the second part of the PRINT statement, the argument .2 is
returned. Since the ATN formula is the inverse of the TAN
function, the value returned was the original argument.

AUTO
D Applesoft
• Integer

The AUTO command generates a new line number every time
the user presses Return .

Configuration

AUTO line number [,increment]

Both linenumber and increment must be integers. The /ine­
numberwill be the first line number generated. The increment is
the amount to be added to the current line number to generate
the next line number. If the increment is not included, the
increment will be set to 10 by default.

86 Apple lie Users Handbook

The AUTO command is generally used when entering programs.
This saves the user the task of typing every line number.

The AUTO command is ended by pressing Ctrl-X and typing
MAN.

Example

AUTO 30
AUTO 10, 5

The first command will generate the line numbers 30, 40, 50, and
so on. The second command will generate the line numbers 10,
15, 20, 25, 30, ...

AUTO is not available in Applesoft BASIC.

• Applesoft
CALL • Integer

The CALL statement is used to execute a machine language
subroutine.

Configuration

CALL expression

expression evaluates to an integer between -65535 and +65535.
In Integer BASIC, the value of the expression must be an integer
between -32767 and +32767.

The expression is the location of the machine language sub­
routine.

In Applesoft, there are two values which will execute the same
machine language subroutine. There is the positive address and
the negative address. The conversion is as follows :

positive address - 65536 =negative address

Apple BASIC Reference Guide 87

This can be very useful in Integer BASIC. If there was a machine
language subroutine located at location 64578, a CALL 64578
could not be used. This is due to the fact that the expression
indicated is greater than the largest integer that can be used in
Integer BASIC. Using the previous conversion equation, the
CALL used would be CALL-958.

Example

CALL-936

The preceding CALL executes a machine language subroutine at
the given location. This CALL is identical to the HOME command
in Applesoft.

CHR$
• Applesoft
o Integer

The CHR$ function returns the ASCII character for the value
given in the argument.

Configuration

CHR$(argument)

argument is a real number or an integer between 0 and 255. If th~
argument is a real number, its decimal portion will be truncated.

Example

10 X$ = CHR$(80)
20 PRINT CHR$(65), X$
]RUN [Ret]
A p

The ASCII code for A is 65 and the code for Pis 80.

88 Apple lie Users Handbook

CLEAR
• Applesoft
D Integer

CLEAR initializes all variables, arrays, and strings to zero. CLEAR
also initializes all DAT A pointers, FOR ... NEXT counters, sub­
routine pointers, etc.

Configuration

CLEAR

CLEAR can be used anywhere in a program, but should not be
used in a subroutine or FOR ... NEXT loop.

Example

10 A= 10
20 PRINT A
30 CLEAR
40 PRINT A
]RUN [Ret]
10
0

Line 30 sets variable A from 10 to 0.

CLR
o Applesoft
• Integer

CLR sets all variables to 0, strings to null, and clears any
dimensioned variables.

Configuration

CLR

CLR can only be used in the immediate mode.

Apple BASIC Reference Guide 89

Example

A= 10
B$ = "P"
CLR
PRINT A, B$
0

The variable A is cleared to 0 and the string variable B$ is set to
null.

• Applesoft
COLOR • Integer

The COLOR statement defines the next color to be displayed by
the graphics statements PLOT, HLIN ... AT, and VLIN ... AT.

Configuration

COLOR =expression

The exPfession is an integer from 0 to 255. The computer can
display -a total of 16 different colors. The colors and their
associat~tl numbers are shown below.

0 Black
1 Magenta
2 Dark Blue
3 Purple
4 Dark Green
5 Grey
6 Medium Blue
7 Light Blue

8 Brown
9 Orange

10 Grey
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

Beyond 15, the colors repeat (16 - Black, 17 - Magenta).

90 Apple lie Users Handbook

Example

10 GR
20 COLOR =6
30 PLOT 0,0
40 END

The preceding program will place a blue square in the upper left
hand corner of the screen.

CON
o Applesoft
• Integer

The CON statement resumes program execution at the next
instruction.

Configuration

CON

This command is generally executed following a Ctrl-C.

Example

10 FOR X = 1 TO 10
20 PRINT X, XA2, XA3
30 NEXT X
40 END
> RUN [Ret]
1 1 1
2 4 8
4 16 64
5 25

Ctrl-C pressed - STOPPED AT 30
125

> CON [Ret]
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Apple BASIC Reference Guide 91

In the preceding example, a Ctrl-C was entered in as shown. The
Ctrl-C stopped the execution of the program. Entering in CON
continued program execution.

CONT
• Applesoft
o Integer

CONT resumes program execution at the next instruction.

Configuration

CONT

This command is generally executed following a STOP, END, or
Ctrl-C.

Example

10 FOR I = 1 TO 5
20 PRINT I, IA 2
30 IF I= 3 THEN STOP
40 NEXT I
]RUN [Ret]
1 1
2 4
3 9

BREAK IN 30
]CONT [Ret]
4 16
5 25

In the preceding example, program execution stopped in line 30
when I = 3. Typing in CONT continued program execution.

92 Apple lie Users Handbook

cos
• Applesoft
o Integer

The COS function is a trigonometric function that returns the
cosine of its argument.

Configuration

COS(argument)

The argument is a numeric expression or numeric constant in
radians.

Example

]PRINT COS(J.141592653)
-1

In the preceding example, the cosine of Pl is returned .

DATA
• Applesoft
o Integer

The DAT A statement contains a list of data items. These data
items are read into the variables specified by the READ state­
ment.

Configuration

DATA item [,item .. .]

item can either be a real number, integer, or string. The data
items must be in the same order as they are read by the READ
statement.

If a comma or colon is to be included in the string, the item
should be enclosed in quotes. The following characters cannot

Apple BASIC Reference Guide 93

be placed in a DAT A statement.

RETURN
ESC ,,

(left arrow)
(right arrow)

Ctrl-H
Ctrl-M
Ctrl-U
Ctrl-X

The preceding characters may be used in a program by
executing the CHR$ function.

The DAT A statement can be located anywhere in a program. It
does not have to precede the READ statement.

Example

10 DATA "SMITH, JOE", JOHN BROWN
20 READ N1$, N2$
30 PRINT N1$, N2$
]RUN [Ret]
SMITH, JOE JOHN BROWN

The READ interpreted the first string as SMITH, JOE because it
was enclosed in quotes. The second string is read as JOHN
BROWN.

DEF FN
• Applesoft
o Integer

The DEF FN statement allows the user to define a function. This
function can then be used in the same manner as any built-in
function.

Configuration

DEF FN name (variable) =expression

94 Apple lie Users Handbook

name is the name of the function. Like variable names, only the
first two characters are significant. The variable can be any real
numeric variable name. The expression can be a numeric
constant or a numeric equation.

Example

10 Pl= ATN(1) *4:REM Pl
20 DEF FNAR(X) =Pl * XA2
30 FOR RAD = 1 TO 3
40 PRINT RAD, FNAR(RAD)
50 NEXT RAD
60 END
]RUN [Ret]
1
2
3

3.14159266
12.5663706
28.2743339

In line 10, Pl is calculated so it can be used in the function
definition. In line 20, the function for the area of a circle is
defined. Line 40 then uses the function by passing the value of
the radius to the function. The value of the area of the circle is
then returned and printed by the PRINT statement.

• Applesoft
DEL • Integer

DEL deletes the lines given in the argument.

Configuration

DEL a [,b]*

a and bare integers greater than or equal to 0. In Applesoft, b
must be greater than a. In Integer BASIC, if bis less than a only

* The [,b] is only optional in Integer BASIC.

Apple BASIC Reference Guide 95

line a will be deleted.

If a is not an existing line number in the program, the next
highest line number will be used. If b is not an existing line
number in the program, the next lowest line number will be
used.

The DEL can also be used as a program statement in Applesoft. If
the DEL is used as a program statement, the specified lines will be
deleted. However, program execution will halt after the
statement has been executed. The CONT command will not
resume program execution.

DIM

)LIST [Ret)
10 TEXT

Example

20 CALL-936: REM HOME
30 VTAB 3
40 PRINT "HELLO"
50 END
]DEL 30,50 [Ret)
)LIST [Ret)
10 TEXT
20 CALL -936:REM HOME

• Applesoft
• Integer

The DIM statement is used to allocate memory space for strings,
arrays, or matrices. I

Applesoft
DIM

Configuration

a (i[,j) ...) [,b (i[,j) .. .)
a% (i[,j] ...) [,b% (i[,j) ...]
a$ (a$ (i[,j) ...) [,b$ (i[,j) ...)

96 Apple lie Users Handbook

Integer
DIM

a (i[,b(i) ...]
a$ (i[,b$(i) ...]

a and bare the variables to be dimensioned. i and j are integers.
In Integer BASIC, the string variable must be dimensioned with
255 elements or less.

In Applesoft BASIC, all arrays, strings, and matrices are prede­
fined with subscripts of 10. Above 10, the value in a DIM
statement corresponds to the largest subscript that can be used
in that variable. However, there is always a zero subscript. As a
result, to save 100 values in a single dimension array, the correct
DIM statement would be DIM A(99).

In Integer BASIC, the value in a DIM statement corresponds to
the largest subscript that can be used with that variable. An
Integer variable with a subscript of 0 is the same as a variable
without the subscript. If TEST(O) = 27, then TEST is also equal to 27
and vice versa. With string variables, there is no 0 subscript.

The maximum size of strings and arrays depends on the amount
of available memory at the time the DIM statement was
executed.

If the DIM statement exceeds the amount of available memory,
the following error will occur:

Applesoft BASIC

Integer BASIC

?OUT OF MEMORY ERROR IN line

***MEM FULL ERR
STOPPED AT line

where line is the line of the DIM statement.

Example. -- Applesoft

DIM A$(10,5), C%(2,20)

In the preceding example, 66 string spaces are allocated for A$,
and 63 integer variables are defined for C%.

Apple BASIC Reference Guide 97

Example -- Integer BASIC

DIM A(10), N$(5)

In the previous example, the DIM statement defines 10 spaces
for the variable A, and N$(5) defines one string of length 5.

DRAW
• Applesoft
o Integer

The DRAW statement plots a shape on the high-resolution
graphics page.

Configuration

DRAW shapeno [AT X, Y]

shapeno is an integer between 0 and 255. X and Ya re integers for
the position of the shape. X must lie between 0 and 279. Y must lie
between 0 and 191.

If AT X, Y is not given, the shape will be plotted at the last X, Y
position designated.

The color, rotation, and size of the shape must have been
previously defined.

Example

10 REM SET UP SCREEN
20 TEXT:HGR
30 FOR X = 7936 TO 7946
40 READ V:REM READ IN SHAPE
50 POKE X,V:REM POKE SHAPE INTO TABLE
60 NEXT X
70 REM TELL WHERE SHAPE IS AT
80 POKE 232,0: POKE 233,31
90 HCOLOR = 3

program continued on the next page

98 Apple lie Users Handbook

100 ROT= 0
110 SCALE = 10
120 DRAW 1 AT 50,30
130 HPLOT 20,70
140 SCALE= 6
150 ROT=4
160 DRAW 1
170 DATA 1,0,4,0,39,36,45,53,54,63,0
180 END ,,

In the preceding example, line 20 initialized the screen for high
resolution graphics. The shape table is then read in the FOR
NEXT loop in lines 30 to 60. These lines define the shape. Since
Applesoft needs to know where the shape table was placed, the
shape address is poked into memory in line 80. Lines 90, 100, and
110 then define the color, rotation, and size of the shape drawn
at line 120. The shape drawn in line 160 will have the position
defined at line 130, size in 140 and the rotation in 150.

'

DSP
o Applesoft
• In teger

The DSP command is a debugging tool. It displays the variable's
value each time its value is changed.

Configuration

DSP variable

variable is a variable in the program to be traced.

The DSP command will display the variable, the variable's value,
and line number each time its value is changed.

Apple BASIC Reference Guide 99

Example

10 DSP A
20 DSP B
30 A= 1
40 B =7
50 C = A*B
60 B =C+A
70 END
]RUN [Ret]
#30 A= 1
#40 B =7
#60 B = 8

IJ1 the preceding example, the line number, variable, and
variable values are displayed when the indicated variable's
values change. Notice that in line 50 the value of A and Bis used,
but not changed, so it is not displayed.

• Applesoft
END • Integer

The END statement is used to stop program execution.

Configuration

END

The END statement is optional in Applesoft. If it is not used, the
program will stop execution at the highest line number.

The END statement is optional in Integer BASIC, but if it is not
included a NO END error will result. The program will essentially
run the same with or without the END statement.

Example

999 END

100 Apple lie Users Handbook

EXP
• Applesoft
o Integer

The EXP function returns the value of e raised to the power of the
argument.

Configuration

EXP (argument)

argument is a numeric constant or numeric expression. (e =
2.71828183).

/

/

Example

PRINT EXP(S)
148.413159

In the preceding example, e5 was returned.

FLASH
• Applesoft
o Integer

The FLASH statement turns on the FLASH video. Following the
execution of the FLASH statement, any characters displayed by
the computer will flash. The characters will alternate from black
on white to white on black.

Configuration

FLASH

Any characters echoed by the computer (entered through the
keyboard), will not flash.

The FLASH mode works by altering the standard ASCII code. So,
any characters sent to the disk or printer while the FLASH mode

Apple BASIC Reference Guide 101

is on, may be sent with the incorrect codes.

The FLASH statement is equivalent to a POKE 50,127. The FLASH
statement is turned off by the NORMAL statement.

Example

]FLASH
] PRINT"**"
**

When the lle's 80-column card is activated (either in the 40 or 80
column mode), the alternative character set will be active. The
alternate does not include flashing characters. Therefore, FLASH
does not function properly when the 80 column card is active.

• Applesoft
FOR .. NEXT • Integer

The FOR .. NEXT statements are used to execute a sequence of
statements a set number of times.

Configuration

FOR variable= a to b [STEP c]

NEXT [variable*] [,variable ...]

variable is a real variable in Applesoft. The variable is used as a
counter. a, b and care numeric expressions or constants. The
numeric constant must be an integer in Integer BASIC. a is the
initial value of the counter and bis the final value. The counter is
incremented or decremented depending on the sign of c. If c is
not given, it will be assumed as 1.

* The variable in NEXT is only optional in Applesoft.

102 Apple lie Users Handbook

The program lines following the FOR statement will be executed
until the NEXT statement is encountered. At this point, the
counter is incremented (assuming positive STEP value) by the
STEP value.

The value for the counter is then compared with its final value b.
As long as the counter's value does not exceed the final value,
the program will branch back to the statement following the
FOR statement. This entire process will then be repeated .

When the counter's value exceeds the specified final value (b) ,
the statement following the NEXT statement will be executed.
This will exit the FOR .. NEXT loop.

One FOR .. NEXT loop may be placed within another FOR .. NEXT
loop. This is known as nesting or nested loops. When FOR .. NEXT
loops are nested, each FOR .. NEXT loop must use a different
variable name for the counter. Also, the NEXT statement for the
inside loop must appear before the NEXT statement for the
outside loop. However, if both loops end at the same point, a
single NEXT statement may be used to end these. Be certain that
the variable for the inside loop appears before the variable for
the outside loop. A NEXT statement such as the following :

NEXT J,I

would be interpreted as follows:

NEXT J
NEXT I

Example

10 FOR X = 1 TO -2 STEP -1
20 PRINT X
30 NEXT X
40 END
]RUN [Ret]
1
0
-1
-2

(

I
I

Apple BASIC Reference Guide 103

In the preceding example,lthe STEP value is -1 so the counter is
decremented until its value is -2. ,

FRE
• Applesoft
o Integer

The FRE function returns the numb~r of free bytes in memory.

Configuration

FRE (argument)

argument can be any legal expression. It makes no difference
what the argument is.

If the amount of free bytes exceeds 32767, the FRE function will
return a negative number. By adding 65536 to this number, you
can compute the actUal number-Of free bytes.

When FRE is used, a housekeeping will be performed before the
function returns the number of free bytes. Housekeeping is a
process where BASIC gathers all useful data by freeing any
memory which was once used for strings, but which is currently
unused. Memor~\ for strings becomes unused when the string's

\
length cha,nges.

Example

10 A= FRE (0)
20 IF A < 0 THEN A= A+65536
30 PRINT "NUMBER OF FREE BYTES IS";A
40 END
]RUN [Ret]
NUMBER OF FREE BYTES IS 36272

104 Apple lie Users Handbook

GET
ii Applesoft
tJ Integer

The GET statement inputs a single character from the keyboard.
The character is not displayed on the screen.

Configuration

GET variable

variable can be any legal Applesoft variable.

Although variable can ' be any variable, it is to the user's
advantage to use a string variable and convert it to a numeric
variable with the VAL function. If a numeric variable was used
with GET, any non-numeric character entered will cause a syntax
error and halt program execution.

10 PRINT "PRESS A KEY";
20 GET A$
30 PRINT

Example

40 PRINT "THE KEY PRESSED WAS";A$
50 PRINT
60 PRINT "IF THE KEY PRESSED WAS NOT A DISPLAYABLE

CHARACTER IT WOULD NOT BE DISPLAYED"
70 END

In the preceding example, line 10 prompts the user to press a
key. Line 20 waits for a key to be pressed. When a key is pressed,
the character value of the key is assigned to the variable A$. Line
40 then displays the character input. Line 60 is included because
some keys generate characters that cannot be displayed (i.e.

I
return key, ESC key and the space bar).~

Apple BASIC Reference Guide 105

• Applesoft
GOSUB, RETURN • Integer

The GOSUB, RETURN statements are used to branch to a
subroutine and then return from it.

) f" • Con 1gurat1on

GOSUB line

RETURN

line is the first line of a subroutine. In Applesoft, the GOSUB will
branch to line 0 if line is omitted or an expression is used. In
Integer BASIC, line can be an expression, where the expression
evaluates to a line number of a subroutine.

A subroutine is called by the GOSUB statement. When the
RETURN statement is encountered within that subroutine,
program control will branch back to the statement following tbe
GOSUB statement just executed.

Subroutines may appear at any point within the program.
However, it is good programming practice to group all sub­
routines near the beginning of the program.

Example

10 GOTO 60
20 PRINT X,
30 Y = X*X
40 PRINTY
50 RETURN
60 X = O
70 FOR I = 1 TO 3
80 X = X+1
90 GOSUB 20

program continued on next page (

106 Apple lie Users Handbook

100 NEXT I
110 END
]RUN [Ret]
1 . 1
2 4
3 9

In the preceding example, line 10 jumps over the subroutine to
the main program body. When the program reaches line 90, the
GOSUB is executed . The program branches to line 20. When the
RETURN in line SO is reached, program execution jumps back to
line 100. This process continues until the FOR counter reaches 3.

• Applesoft
GOTO • Integer

The GOTO statement branches program control to another
program line.

Configuration

GOTO line

line is the line number of the statement to be branched to.

Example

10 PRINT "FIRST"
20 GOTO 40
30 PRINT "M~DDLE"
40 PRINT "LAST"
SO END J

Apple BASIC Reference Guide 107

• Applesoft
GR • Integer

The GR statement sets and clears the low resolution screen mode
(40x40 with 4 lines ~f text at the bottom of the screen).

Configuration

GR

This statement should be executed before the graphics state­
ments PLOT, HLIN .. AT, and VLIN .. AT are used.

When the GR statement is executed, the color is automatically
set to 0 (BLACK).

Example

10 GR
20 COLOR =15
30 PLOT 19, 23
40 END

The preceding example should put a white square on the screen.
If line 10 was omitted, a zero would be placed in the middle of
the screen, because the low-resolution mode was not set.

If you wish to return to the normal mode, you can do so by
executing the TEXT statement.

If full-screen graphics (40x48) is desired, this can be accomplished
by executing POKE -16302,0 after GR has been executed. POKE
- 16301,0 can be used to restore the text window.

HCOLOR
• Applesoft
o Integer

The HCOLOR statement defines the next color to be displayed

108 Apple lie Users Handbook

by the graphics statements, HPLOT, DRAW, and XDRAW.
HCOLOR is used in the high resolution graphics mode.

Configuration

HCOLOR =number

number is a numeric expression or numeric constant that
evaluates to a real number or integer between 0 and 7. Values
outside t~is range will produce an error. The colors and their
associated numbers are shown below.

0 - Black 1
1 - Green*
2 - Violet*
3 - White 1

-
4 - Black 2
5 - Orange (Red)*
6 - Blue*
7 - White 2

*The actual color depends on the CRT.

HPLOT, DRAW, and XDRAW will all output lines in the color
indicated by HCOLOR until a subsequent HCOLOR statement is
executed.

HGR
• Applesoft
o Integer

The HGR statement sets and clears the high-resolution graphics
mode (280x160), with 4 lines of text at the bottom of the screen.

Configuration

HGR

The HGR statement displays page one of the high-resolution
screen, leaving 4 lines of text at the bottom. If full screen graphics
(280x192) is preferred, the statement POKE -16302,0 will set the
rest of the screen to graphics. A POKE -16301~ restores the 4
lines of text.)

Apple BASIC Reference Guide 109

Example

]HGR

When the preceding example is executed, the high-resolution
graphics mode will be set and the screen will be cleared to black.
There will also be four lines of text at the bottom. If the cursor is
not visible, press the return key until it appears. The cursor may
not be visible if it is located in the graphics area of the screen
rather than the text area.

HGR2
• Applesoft
D Integer

HGR2 sets the screen to the high resolution graphics mode
without the text lines at the bottom of the display (280x192). Page
2 of high-resolution screen memory is displayed by HGR2.

Configuration

HGR2

In the 80-column mode, HGR2 displays page 1 of screen memory
rather then page 2. This can be illustrated by running the follow­
ing example in both the 40 and 80 column modes. It appears that
this is due to the fact that the softswitch that activates screen two
does not work in the 80-column mode.

Example

10 HGR
20 HCOLOR = 2
30 HPLOT 100,100 TO 150,180
35 FOR I= 1TO1000: NEXT I
40 TEXT
50 INPUT "PRESS RETURN TO SEE PAGE 2";A$
60 HGR2
70 HPLOT 0,0 TO 100,0

110 Apple lie Users Handbook

• Applesoft
HIMEM • Integer

The HIMEM statement defines the address of the highest
memory location available to a BASIC program.

Configuration

HIMEM: number

number is a numeric constant or numeric expression_: The value
of number should indicate the highest available memory address.
Th.is value must lie between -65535 to 65535 (-32767 to 32767 in
Integer BASIC).

The current value of HIMEM can be displayed by entering :

PRINT PEEK (116) *256 +PEEK (115) for Applesoft
PRINT PEEK (77) *256 +PEEK (76) for Integer BASIC

If the HIMEM : is set lower than LOMEM or set so low that there is
not enough room for the program to run , an out of memory
error will occur.

HIMEM can only be used in the immediate mode in Integer
BASIC.

The value of HIMEM is not changed by the commands NEW,
CLEAR, RUN, and DEL.

The HIMEM statement is generally used to reserve memory for a
machine language subroutine called by the BASIC program. The
HIMEM statement keeps BASIC variable and array storage
separate from the machine langua~ subroutine.

Apple BASIC Reference Guide 111

Example

HIMEM: 33024

The preceding example sets high memory to memory address
33024. Variable and string storage will begin at this address and
extend downward into memory.

• Applesoft
HUN • Integer

HLIN is used in the low resolution graphics mode to draw a
horizontal line on the screen.

Configuration

HLIN column 1, column 2 AT row

column 1, column 2, and row can be either numeric constants or
numeric expressions. column 1 and column 2 must lie in the
range of 0 to 39. Also, the value of column 1 mt1st be less than or
equal to column 2. Row must lie in the range of 0 to 47.

If an incorrect value is used for column 1, column 2, or row, the
following error message will be displayed:

ILLEGAL QUANTITY ERROR

If H LIN is executed in the text mode, a Ii ne of characters rather
than graphics points will be displayed. Also, if the low resolution
graphics mode with the text mode is active, and HLIN plots to
rows 42 to 47, a line of characters will be displayed.

Example

10 GR
20 COLOR= 3
30 HLIN0,39AT20
40 END

\

112 Apple lie Users Handbook

The preceding example will draw a purple line across the screen
at row 20.

HOME
• Applesoft
a Integer

The HOME statement clears the screen and places the cursor in
the upper left hand corner of the screen.

Configuration

HOME

The HOME command is not available in Integer BASIC. The
cursor can be HOME'd in Integer BASIC by executing CALL-936.

Example

HOME

HPLOT
• Applesoft
o Integer

The HPLOT statement can be used to place a dot or draw a line
on the high resolution graphics screen. The color of the dot must
have been previously defined by the HCOLOR statement.

Configuration

HPLOT column 1, row 1 [TO column 2, row 2 ...]
HPLOT TO column, row

column, row, column 1, column 2, row 1, and row 2 are numeric
constants or numeric expressions. column, column 1, and
column 2 must lie between 0 and 279. The row, row 1, and row 2
must lie between 0 and 191.

Apple BASIC Reference Guide 113

If the HPLOT is used as shown in the first configuration without
the optional (TO column 2, row 2), a dot will be plotted. The
optional TO will connect the two dots. If the column 1 and row 1
preceding the TO are omitted, the line will be drawn from the
previous point plotted to the point indicated by column 2, row 2.

Example

10 HGR
20 HCOLOR =3
30 HPLOT 0,0
40 HPLOT TO 0,50 TO 50,50
50 HPLOT TO 50,0 TO 0,0

The preceding example will draw a square in the upper left hand
corner of the screen.

HTAB
• Applesoft
o Integer

The HT AB statement positions the cursor at the location specified
by its argument.

Configuration

HT AB argument

argument is a numeric constant or numeric expression. The
argument must be between 1 .and 80.

The cursor will be moved to the position specified by the
argument. HT AB moves the cursor without erasing any displayed
characters.

114 Apple lie Users Handbook

Example

10 PRINT "1234567890"
20 HTAB 3: PRINT 3;
30 HTAB 9: PRINT 9;
40 HTAB 5: PRINT 5
]RUN [Ret]
1234567890

3 5 9

In the preceding example, line 20 places the cursor at position 3
and displays a 3.·ln line 30, the cursor is moved to position 9. The
PRINT statement displays a 9. In line 40, HT AB moves the cursor
back to position 5, and the PRINT statement displays a 5.

• Applesoft
IF .. THEN • Integer

The IF .. THEN statement sets up a condition which will influence
the program flow.

Configuration

IF expression THEN statement [:statement. ..]

expression is a conditional expression. statement can be any
BASIC statement.

'
If the expression is evaluated as true, the THEN portion of the
statement will be executed.

In Applesoft BASIC, if the expression evaluates as true, the
statement following THEN will be executed. If the expression
evaluates as false, the statement in the next program line will be
executed.

In Integer BASIC, if the expression evaluates as true, the
statement(s) following THEN will be executed. If the expression

Apple BASIC Reference Guide 115

evaluates as false, the st.atement immediately following THEN
will not be executed. Program control will branch to the next
statement even if that statement is on the same program line as
the IF, THEN statement.

For example, if the following statement evaluated as true,

IF X=15 THEN PRINT "TRUE": PRINT X

the following would be displayed:

TRUE
15

If this statement evaluated as false, TRUE would not be displayed.
However, the value for X would be displayed.

Applesoft

Integer

IN#

Example

100 IF X > 8 THEN X = 0
110 Y=Y+1

100 IF X > 8 THEN X = 0 : Y = Y+1

• Applesoft
• Integer

IN# specifies the peripheral slot which will be providing sub­
sequent input for the lie.

Configuration

IN# argument

argument is a numeric constant or numeric expression which
specifies the peripheral slot. The numeric constant must be an
integer for Integer BASIC. The value of the argument must be
between 1 and 7.

116 Apple I le Users Handbook

If there is no peripheral in the specified slot, the system will
hang. Press the Reset key to exit this situation.

Example

IN#2

INT
• Applesoft
D Integer

The I NT function returns the integer value of the specified
argument.

Configuration

I NT (argument)

argument is a numeric constant or numeric expression.

The value returned will always be less than or equal to the
original value.

Example

PRINT INT (1.7), INT (-1.7)
1 -2

In the above example, 1.7 is returned as a 1 and-1.7 is returned as
-2.

INVERSE
• Applesoft
o Integer

The INVERSE statement turns on the INVERSE (reverse) video.
Following the execution of the INVERSE statement, any charac­
ters displayed by the computer will be in inverse (i.e. characters
will be displayed as black characters on a white background.)

Apple BASIC Reference Guide 117

Configuration

INVERSE

The INVERSE mode works by altering the standard ASCII code.
Therefore, any characters sent to the disk or printer while the
INVERSE mode is on, may be sent with the incorrect codes.

The INVERSE statement is equivalent to POKE 50, 127. The
INVERSE statement can be turned off by the NORMAL statement.

INPUT

Example

] INVERSE
] PRINT"++"
++

• Applesoft
• Integer

The IN PUT statement accepts data entry from the keyboard or
another input device while the program is being executed.

Applesoft
Integer

Configuration

INPUT ["message";] variable [,variable]
INPUT ["message",] variable [,variable]

message is a string used as a prompt. variable can be any valid
BASIC variable.

W,hen an INPUT statement is executed, program execution will
stop temporarily. If a prompt was included, the prompt will be
displayed. In Applesoft, a question mark will be displayed if
there is no prompt. In Integer BASIC, a question mark will follow
the prompt if the variable is an integer variable.

118 Apple lie Users Handbook

After the INPUT statement has been executed, the user may
enter the desired data at the keyboard. That data is assigned to
the variable(s) listed in the INPUT statement. The number of data
items entered must equal the number of variables listed. Also,
the type of data entered must agree with the type specified in
variable. The data items must be delimited by commas when
input.

Applesoft

Integer

LEFT$

Example

10 INPUT "ENTER A NUMBER"; A
20 PRINT "THE NUMBER IS"; A
30 END
]RUN [Ret]
ENTER A NUMBER 4.5
THE NUMBER is 4.5

10 INPUT "ENTER A NUMBER", A
20 PRINT "THE NUMBER IS"; A
30 END
> RUN [Ret]
ENTER A NUMBER? i
THE NUMBER IS 4

• Applesoft
o Integer

The LEFT$ function returns the number of characters specified in
the second expression of the argument to the leftmost of the
string specified in the first part of the argument.

Configuration

LEFT$ (a$,x)

a$ is a string constant searched by the function . xis the number
of characters to be returned.

Apple BASIC Reference Guide 119

Integer BASIC can duplicate this function by using string arrays.

Example

10 A$= II ABCDEFG"
20 PRINT LEFT$ (A$, 3)
30 END
]RUN [Ret]
ABC

The preceding LEFT$ function returned the 3 leftmost characters
in A$. .

In Integer BASIC, the statement PRINT A$ (1,3) would return the
same characters. (Be sure that the variable A$ has previously
been dimensioned to 7 in Integer BASIC.)

• Applesoft
LEN • Integer

The LEN function returns the number of characters in a string.

Configuration

LEN (a$)

a$ is a string constant.

Example

PRINT LEN ("APPLE")
s

120 Apple lie Users Handbook

• Applesoft
LET • Integer

The LET statement is an optional assignment statement. An
assignment statement determines the value of an expression and
then assigns that result to the variable named in the assignment
statement.

Configuration

LET variable = expression

variable must be of the same data type as the expression. For
example, if variable is a string, expression must also be a string. If
variable is an integer or real number, then expression must also
be numeric.

LIST

Example

10 LET C = 1+A
20 L = C*2

• Applesoft
• Integer

The LIST command is used to list the program stored in memory
on the video display or other device.

Configuration

Applesoft

Integer

LIST a [{.:.l[b]]
or

LIST [[a]{.:.l)b

LIST a [,b]

a and b are integers greater than or equal to 0. In Applesoft
BASIC, if a is greater than b, no lines will be listed. In Integer
BASIC, if b is less than a only line a will be listed.

Apple BASIC Reference Guide 121

If a is not a line number in the program, the next highest line
number will be used. If bis not a line number in the program, the
next lowest line number will be used ~

In Applesoft, a LIST 0 statement will list all the lines in a program.
For example, LIST 100,0 would list all the lines from line 100 to the
end of the program.

In Applesoft, LIST can be frozen by Ctrl-S. Pressing any other key
will resume LIST. The listing may be stopped by pressing Ctrl-C.

LOAD

Example

LIST 10 [Ret]
10 GR
LIST 10,50 [Ret]
10 GR
20 POKE -16302,0
30 COLOR =3
40 GOSUB 5000
50 COLOR =7

• Applesoft
• Integer

The LOAD command is used to load a program from a storage
device to the computer.

Configuration

Cassette LOAD
*Disk LOAD filename [,D drive][,V volume][,S slot]

filenarpe is the name of the program. drive is the drive that the
file is in and volume is the volume number of the diskette. slot is
the slot the disk interface card is in.

*LOAD is only interpreted as a BASIC reserved word when used
with the cassette unit.

122 Apple Ile Users Handbook

When using the cassette LOAD, first make sure that the current
language is active (Applesoft or Integer BASIC). Position the tape
to the beginning of the program, type LOAD, and press return.
The cursor will disappear and after a few seconds the Apple will
beep. The beep indicates that LOAD has started. When the
second beep sounds, the LOAD will be finished. If an error
occurred, turn off the computer, turn it on, and try again.

In the DOS LOAD, LOAD need only be entered with the
program name, and the return key pressed. If the indicated file
name is not present on the specified diskette, the FILE NOT
FOUND error will occur.

Example

LOAD

LOG
• Applesoft
o Integer

The LOG function returns the natural log of the argument.

Configuration

LOG (argument)

argument is a numeric constant or numeric expression greater
than 0. .

The natural log is undefined for negative numbers.

Example

PRINT LOG (25)
3.21887583

LOMEM:

Apple BASIC Reference Guide 123

• Applesoft
•Integer

The LOMEM statement defines the address of the lowest
memory location available for BASIC.

Configuration

LOMEM: number

number is a numeric constant or numeric expression. The value
of number should be the lowest available memory address. This
value must lie between -65535 to 65535 (-32767 to 32767 in
Integer BASIC).

The current value of LOMEM .can be displayed by entering
PRINT PEEK (106) *256 +PEEK (105) .

If LOMEM is set higher than the HIMEM an error will occur.
LOMEM cannot be set lower than 2048.

LOMEM can only be used in the immediate mode in Integer
BASIC. It cannot be used within a program.

LOMEM cannot be set lower than its current value. LOMEM can
only be increased.

LOMEM will be reset by the NEW or DEL commands or by adding
or changing a line.

Example

10 F = PEEK(106) * 256 + PEEK(105)
20 PRINT "LOMEM IS";F
30 LOMEM:3000
40 F = PEEK(106) * 256 + PEEK(105)
50 PRINT "LOMEM IS NOW"; F
60 END

124 Apple lie Users Handbook

In the preceding example, LOMEM is calculated on line 10 and
then displayed on line 20. LOMEM is then set to 3000 in line 30.
Line 0 then recalculates the LOMEM value. The LOMEM setting
is finally displayed by the PRINT statement in line 50.

MAN
o Applesoft
• Integer

The MAN command is used to turn off the automatic generation
of program lines.

Configuration

MAN

When the computer is automatically generating program lines,
Ctrl -X must be pressed before entering the MAN command.

Example

> AUTO 10 [Ret]
> 10 REM TEST [Ret]
> 20 ~ Ctrl-X entered by user

> MAN [Ret]

In the preceding example, the AUTO was turned off by the
combination of Ctrl-X and MAN.

MID$
• Applesoft
o Integer

The Ml 0$ function returns the portion of a string specified by its
argument.

Apple BASIC Reference Guide 125

Configuration

MID$ (a$, b[,c])

a$ is a string constant.band care numeric constants or numeric
expressions with a value between 0 and 255. b is the first
character in a$ being returned. c is the number of characters in
a$ being returned. If c is not included, all characters to the right
of the position given in b will be returned .

The MID$ function can be duplicated in Integer BASIC using
string arrays.

Example

10 N$ ="COMPUTER"
20 PRINT MID$ (N$, 4, 3)
30 END
]RUN [Ret]
PUT

In the preceding example, the fourth position in the string N$ is
the starting position. The 3 indicates 3 characters. This could be
duplicated in Integer BASIC by using N$(4,6) in place of MID$
(N$,1,3). Integer BASIC also requires that the string variable had
been dimensioned as DIM N$(8).

• Applesoft
NEW • Integer

The NEW command deletes the program in memory and clears
all variables.

Configuration

NEW

126 Apple lie Users Handbook

The NEW command is generally used to free memory space
before a new program is entered.

NORMAL

Example

> LIST [Ret]
10 TEXT
20 END

> NEW [Ret]
> LIST [Ret]

• Applesoft
o Integer

The NORMAL statement turns off the FLASH or INVERSE
statements.

Configuration

NORMAL

The NORMAL statement sets the video output mode to white
characters on a black background. The NORMAL statement is
equivalent to the POKE 50,255 statement. Since NORMAL is not
available in Integer BASIC, the POKE 50,255 can be used in its
place.

Example

NORMAL

• Applesoft
NOT • Integer

The NOT function logically compliments the value given in the
argument.

Apple BASIC Reference Guide 127

Configuration

NOT argument

argument is a numeric constant or numeric expression. In
Integer BASIC the numeric constant must be an integer. If the
argument evaluates to true (non-zero), false (zero) will be
returned. If the argument evaluates to false (zero) , true (one) will
be returned.

10 A= 2
20 IF NOT (A= 1)

NOT1=0
NOT 0=1

Example

THEN PRINT "A DOES NOT EQUAL ONE"
30 END
]RUN [Ret]
A DOES NOT EQUAL ONE

• Applesoft
NO TRACE • Integer

The NO TRACE command turns off the TRACE command.

Configuration

NO TRACE

The NO TRACE command may be useg as a program statement.

Example

NO TRACE

128 Apple lie Users Handbook

ON
• Applesoft
o Integer

The ON statement is used in conjunction with GOTO and
I

GOSUB. The statements are used to branch program control to
one of several program lines depending on the value appearing
after ON.

Configuration

ON exp GOTO line [,line ...]
ON exp GOSUB line [,line ...]

exp can be any numeric constant or numeric expression. line is
the line number the program is to branch to.

The value of exp controls which line is to be branched to. For
instance, if exp evaluates to 1, program control will branch to the
line number given in the first line . . lf exp evaluates to 2, program
control will branch to the second line, etc. ..

If the ON ... GOSUB statement is being used, the line number
specified in line must be that of a subroutine. In other words, a
RETURN statement eventually will have to be executed to return
program control.

If exp evaluates to zero or to a number greater than the number
of lines specified after GOTO or GOSUB, the program will
continue with the next executable statement.

Example

10 INPUT "ENTER A NUMBER BETWEEN 1AND4 ";I
20 ON I GOTO 60,80,100,120
30 PRINT
40 INPUT "PLEASE ENTER A NUMBER BETWEEN 1 AND 4 ";I
50 GOTO 20
60 PRINT "YOU ENTERED A ONE"
70 GOTO 130

program continued on the next page

Apple BASIC Reference Guide 129

80 PRINT "YOU ENTERED A TWO"
90 GOTO 130

100 PRINT "YOU ENTERED A THREE"
110 GOTO 130
120 PRINT "YOU ENTERED A FOUR"
130 END

In the preceding example, line 10 prompts the user to enter a
number between one and four. In line 20, an ON ... GOTO will
branch control to a different line depending on the value of I. If I
is one, program execution will branch to 60. If I is two, program
execution will branch to 80, etc. If zero or a number greater than
four was entered, program execution will continue to line 30.

ONERR GOTO
• Applesoft
o Integer

The ON ERR statement allows errors to be trapped. The statement
then transfers program control to an error handling routine at
the indicated line number.

Configuration

ONERR GOTO line

line is the first line of the error handling routine. ON ERR GOTO
should be executed before the error has occurred.

When Applesoft executes a program, it executes the program
line by line. If an error occurs during program execution,
Applesoft will check to see if an ONERR GOTO statement has
been executed. If no ONERR GOTO statement had been
executed, Applesoft will halt program execution and display the
error. Otherwise the program will branch to the line ind icated in

I

the ONERR GOTO statement.

POKE 216,0 turns off any previously executed ONERR GOTO
statement.

130 Apple lie Users Handbook

To find out what error has occurred, execute PEEK (222) . The
value returned w ill be the error code. The fo llowing list indicates
the various Applesoft error codes and their respective error
messages.

Error Code · .' Error Message

0 NEXT without FOR
16 Syntax
22 RETURN without GOSUB
42 Out of DATA
53 Illegal Quantity
69 Overflow
77 Out of Memory
90 Undefined Statement

107 Bad Subscript
120 Redimensioned Array
133 Division by Zero
163 Type Mismatch
176 String Too Long
191 Formula Too Complex
224 Undefined Function
254 Bad Response to INPUT Statement
255 Ctrl C Interrupt Attempted

For a list of DOS errors and error codes, see Appendix F.

The RESUME command can be used to return the program to the
beginning of the statement where the error occurred.

Apple BASIC Reference Guide 131

Example

10 ONERR GOTO 1000
20 INPUT "ENTER A NUMBER"; A
30 PRINT "A="; A
40 END
1000 E = PEEK (222): REM ERROR CODE
1010 IF E = 255 THEN END: REM Ctrl-C ENTERED
1020 IF E = 254 THE PRINT "INVALID ENTRY": RESUME
1030 IF E = 69 THEN PRINT "NUMBER TOO LARGE/

TOO MANY DIGITS": RESUME
1040 PRINT "ERROR CODE"; E
1050 END

]RUN [Ret]
ENTER A NUMBER ONE [Ret]
INVALID ENTRY
ENTER A NUMBER 7E50 [Ret]
NUMBER TOO LARGE/TOO MANY DIGITS
ENTER A NUMBER 2. [Ret]
A =5

In line 10, the ON ERR routine is set. When an invalid number was
entered in response to the INPUT statement in line 20, the
program branched to line 1000 where E was assigned the proper
error code. Lines 1010-1030 check the variable E for its value. If E =
255, then a Ctrl-C was entered. If E = 254, an invalid number was
entered. If E = 69, the number entered was too large or had too
many digits. Lines 1020 and 1030 incorporate the RESUME
statement to branch back to line 20.

• Applesoft
OR • Integer

OR is a logical math operat~r. This reserved word is generally
used in conjunction with the IF ... THEN statement.

132 Apple lie Users Handbook

Configuration

expression 1 OR expression 2

expression 1 and expression 2 are Boolean expressions. If the
expression is numeric (non-zero), it xviii be evaluated to true. A
zero is treated as false. A truth table for OR is illustrated below.

x y XORY

true true true
true false true
false true true
false false false

In both Applesoft and Integer BASIC, a true is represented by a 1
and false by a 0.

10 A =3
20 B = 5

Example

30 IF (B < A) OR (B = 5) THEN 50
40 END
50 PRINT "EITHER BIS LESS THAN A"
60 PRINT "ORB IS EQUAL TO 5"
70 END

]RUN [Ret]
EITHER BIS LESS THAN A
OR B IS EQUAL TO 5

In the preceding example, Bis not less than A, but Bis equal to 5.
Therefore, the whole OR expression is true, and the program
branches to line 50.

Apple BASIC Reference Guide 133

• Applesoft
POL • Integer

The PDL function returns the value of one of the four different
game controllers (paddles).

Configuration

PDL (argument)

argument is a numeric constant or numeric expression. The
numeric constant must be an integer in Integer BASIC. The value
of the argument must lie between 0 and 255. The value of the
argument corresponds to the game controller. For example, X =
PDL(O) returns the position of game controller number zero. The
number returned will be beteen 0 and 255.

If the value of the argument is between 4 and 255, the PDL
function will return an unpredictable number. Using an
argument between 4 and 255 can also produce unwanted side
effects which affect program execution.

PEEK

Example

PRINT PDL(O)
120

• Applesoft
• Integer

The PEEK function returns the contents of the memory address
given in the argument.

Configuration

PEEK (argument)

134 Apple lie Users Handbook

argument is a numeric constant or numeric expression between
-65535 and 65535 (-32767 to 32767 in Integer BASIC). The
numeric constant must be an, integer in Integer BASIC.

The decimal integer returned by the function will lie between 0
and 255.

Example

PRINT PEEK (-857)
202

The preceding example returns the contents of location -857.

• Applesoft
PLOT • Integer

The PLOT statement plots a dot on the low resolution graphics
screen. The color of the dot must have been previously defined
by the COLOR statement.

Configuration

PLOT column, row

column and row must be a numeric constant or a numeric
expression. The numeric constant must be an integer for Integer
BASIC. column must lie between 0 and 39 and row must lie
between 0 and 47.

The PLOT occurs at the position specified. For example PLOT 3,5
would place a dot at row five and column three.

The origin (0,0) is located in the upper left hand corner of the
screen.

Apple BASIC Reference Guide 135

If a PLOT statement is executed when the text mode is active a
character will be placed where the dot should have appeared.
The same will happen if a PLOT is made in the row range of 40
and 47 in the mixed graphics-text mode.

Example

10 GR
20 COLOR= 3
30 FOR I = 0 TO 39
40 PLOT 1,1
50 NEXT I
60 END

The preceding example will draw a diagonal line across the
screen.

• • • • • • • • • • • • • • • • • • •

POKE

• • • • • • • • • • • • • • • • • • •

• Applesoft
• Integer

The POKE statement stores one byte of information in the
memory location specified. '

/

136 Apple lie Users Handbook

Configuration

POKE address, value

address and value are numeric constants or numeric expressions.
address or value must evaluate to an integer in Integer BASIC.
address lies between -65535 and 65535 (-32767 and 32767 in
Integer BASIC.) value must lie between 0 and 255.

The POKE statement places the indicated value at the specified
memory address. A POKE has no effect if the address is in ROM
memory. If a POKE is not used carefully, it can disrupt the lle's
execution.

Example

10 PRINT PEEK(7900)
20 POKE 7900,37
30 PRINT PEEK(7900)
40 POKE 7900,158
50 PRINT PEEK(7900)
60 END

In the preceding example, line 10 first displays what is currently
in memory location 7900. The value 37 is then poked into
memory on line 20. Line 30 displays the value at m~mory location
7900. The value 158 is then poked into memory and displayed in
lines 40 and 50.

• Applesoft
POP • Integer

The POP statement causes a program to ignore the GOSUB or
ON/GOSUB statement that was executed last.

Configuration

POP

Apple BASIC Reference Guide 137

In effect, a GOSUB or ON/GOSUB statement is converted to a
GOTO or ON/GOTO statement when POP is executed. The
program "forgets" that it is in a subroutine. As a result, when a
POP statement is executed, the next RETURN statement branches
the program control to the line after the GOSUB statement
before the previous GOSUB statement. In other words, the
program "forgets" where the subroutine was called from, so it
returns to a previous GOSUB statement.

A POP statement is used, in general, to exit a subroutine.

10 x = 5
20 y = 10

Example

30 GOSUB 100
40 END

100 PRINT X
110 IF X > 0 THEN POP:GOTO 130
120 RETURN
130 PRINTY
140 END
]RUN [Ret]
5
10

The previous example contains a program that uses a POP
statement to exit a subroutine. At line 10, Xis assigned the value
5. At line 20, Y is assigned the value 10. At line 30, the subroutine
at line 100 is called.

At line 100, the value of Xis displayed. Line 110 is an IF/THEN
statement that tests the condition X > 0. Since the value of X is
greater than zero, the condition is true. As a result, the POP
statement is executed, and the program control branches to line
130. At line 130, the value of Y is displayed.

138 Apple Ile Users Handbook

Si nee the POP statement was executed, the program is no longer
in the subroutine. If another RETURN statement is executed, the
program will not return to line 30, where the subroutine was
called. The program will return to the line of the previous
GOSUB statement. Since there is no other GOSUB statement in
this program, a RETURN statement would cause an error.

A POP statement can also be used to make the program ignore
the previous FOR statement. When a POP statement is executed
within a FOR/NEXT loop, the loop will not be repeated.
However, an error occurs if a NEXT statement is executed for that
loop.

POS
• Applesoft
o Integer

The POS function returns the current horizontal position of the
cursor.

Configuration

POS (argument)

argument can be any legal Applesoft constant or expression.

The number returned will be an integer from 0 to 39. The
leftmost position is 0.

Example

]HTAB 7: PRINT POS(O)
6

]PRINT TAB(7) ; POS(O)
6

]PRINT SPC(7); POS(O)
7

Apple BASIC Reference Guide 139

In the previous example, the HT AB and TAB functions count the
leftmost position as 1. The SPC and POS functions treat the
leftmost position as 0.

• Applesoft
PRINT • Integer

PRINT is used to display information to the screen or to another
output device.

Configuration

PRINT [expression] [i ... [expression] ...]

expression can be any valid numeric or string constant or
expression.

expression can include string and numeric variables, as well as
string and numeric constants. Each variable name or constant
must be separated by either a comma or a semicolon. When a
comma separates the items in a PRINT statement, the display is
divided into three display positions in Applesoft BASIC. These
begin in columns 1, 17, and 33. In Integer BASIC, the display is
divided into five fields whose display positions begin at columns
1, 9, 17, 25, and 33.

A PRINT statement can end with a comma, semicolon, or with no
punctuation at all. A PRINT statement that ends with a semicolon
causes any subsequent PRINT statement output to appear at the
next position on the same row of output.

When a PRINT statement ends with a comma, the next PRINT
statement output occurs at the next PRINT display position on
the same row of output.

When a PRINT statement has no punctuation at the end, the next
line of output automatically occurs on the next display line.

* When the 80-column card is active the only two tab positions
are set (columns 1,9 in Integer; 1,17 in Applesoft).

140 Apple lie Users Handbook

• Applesoft
PR# • Integer

PR# specifies the peripheral slot which will be providing subse­
quent output for the I le.

Configuration
PR# argument

argument is a numeric constant or numeric expression which
specifies the peripheral slot. The numeric constant must be an
integer for Integer BASIC. The value of the argument must be
between 1 and 7.

If there is not peripheral in the specified slot the system will
hang. Press the reset key to exit this situation.

READ
• Applesoft
o Integer

A READ statement is used to assign values to variables. The values
are taken individually from DAT A statements in the order they
appear in the program.

Configuration

READ a ['b]
a$,b$...

Data items are assigned to variables in the order in which they
appear in the program unless a RESTORE statement has been
executed.

The type of variable in the READ statement must correspond to
the type of data in the corresponding DATA statement. A
numeric variable can only be assigned a numeric value. However,
a string variable can accept any type of character or none at all.

A program must include at least as many data items as the
number of variables in its READ statements unless a RESTORE
statement is executed.

Apple BASIC Reference Guide 141

Example

20 READ X,X$
30 PRINT X$,X
40 END
50 DATA 12, JONES
]RUN [Ret]
JONES 12

The preceding example contains a program that has a READ
statement. At line 20, the variables X and X$ are assigned the
values from the DAT A statement at line 50. At line 30, the values
of the two variables are displayed.

A READ statement can accept data from a DAT A statement that
appears anywhere in a program. A DAT A statement does not
have to precede the READ statement in order to be effective.

RECALL
• Applesoft
D Integer

RECALL is ~ed to recover a numeric array from cassette tape
which previously was saved on tape with the STORE statement.

Configuration

RECALL array

It is not necessary to use the same array variable name in the ['
RECALL statement that was used in the STORE statement.
However, that array should be dimensioned with the same
number of elements in the same dimensions as the array that was
stored. If the array being recalled was dimensioned with fewer
elements than the stored array, the following error messge will
be displayed:

OUT OF MEMORY ERROR

142 Apple lie Users Handbook

If the array being recalled was dimensioned with more elements
than the stored array, the values in the recalled array may be in
the wrong order.

However, the recalled array may be dimensioned with more
elements than the stored array if only one final dimension is
larger. For example, if the stored array was dimensioned as
follows,

DIM A(10,10)

and the recalled array was dimensioned as:

DIM A(12,10)

the values recalled would be out of order.

However, if the recalled array was dimensioned as,

DIM A(10,12)

the recalled values would be in the correct order with zeros
stored in the extra array elements.

If the recalled array is dimensioned with the same number of
elements as the stored array but with different dimensions, any
of the following error messages or error conditions could result:

ERR
Extra zero values
in the recalled array

OUT OF MEMORY ERROR
Data out of order
in the array

The user is not prompted with cassette operating instructions
during the execution of either STORE or RECALL. It is a good
programming practice to precede STORE and RECALL state­
ments with PRINT statement prompts instructing the operator to
press the proper cassette recorder keys.

Apple BASIC Reference Guide 143

The cassette recorder must be in the record mode when STORE

is executed. The recorder will beep once when recording

begins, and will beep a second time when it ends.

The cassette recorder must be in the play mode when RECALL is

executed. The recorder will beep once when the reading begins

and a second time when it ends.

]LOAD STOR1 [Ret]
]LIST [Ret]

Example*

5 REM STOR1-- STORE EXAMPLE
10 DIM A(9)
15 DAT A 1,2,3,4,5,6,7,8,9, 10
20 FOR X = 0 TO 9
30 READ A(X)
40 NEXT X
50 INPUT "SET THE RECORDER ON RECORD

AND PRESS RETURN"; A$
60 STORE A
]RUN [Ret]
SET THE RECORDER ON RECORD AND PRESS RETURN
]NEW [Ret] 1 Press Play & Record on Cassette

]LOAD RECAL 1 [Ret]
]LIST [Ret]
5 REM RECAL 1-- RECALL EXAMPLE

10 DIM A(9)
20 INPUT "PRESS PLAY ON THE RECORDER

AND PRESS RETURN"; A$
30 RECALL A
40 FOR X = 0 TO 9
50 PRINT A(X)
60 NEXT
]RUN [Ret]

program continued on the next page

* This example assumes STOR1 and RECAL 1 had previously
been saved on diskette.

/

144 Apple lie Users Handbook

PRESS PLAY ON THE RECORDER AND PRESS RETURN
1 I Rewind Recorder

2 Press Play

3
4
5
6
7
8
9

10

l

• Applesoft
REM • Integer

A REM statement is used to insert comments in a program. The
REM statement is ignored by the BASIC interpreter.

Configuration

REM remarks

Example

REM INPUT ROUTINE

Any statements that follow a REM statement, on the same line,
are also ignored by the computer. As a result, a REM statement is
generally used on its own line or at the end of a multiple
statement line.

RESTORE
• Applesoft
o Integer

A RESTORE statement is used to move the DAT A statement
pointer to the beginning of the DAT A item list.

Apple BASIC Reference Guide 145

Configuration

RESTORE

The data in a program is read in order, starting with the first
DAT A statement item. In order to reread the data, a RESTORE
statement is necessary.

When a RESTORE statement is executed, the next READ state­
ment will assign to its first variable the first data value that
appears in the program.

Example

10 READ A1,B1,C1,X1$
20 PRINT A1,B1,C1
30 PRINT X1$
40 RESTORE
50 PRINT
60 READ A2,B2,C2,X2$
70 PRINT A2,B2,C2
80 PRINT X2$
90 READ X3$

100 PRINT X3$
110 DATA 32,-102,2.12,RECTOR,SPALL

In the preceding example, data is read into the variables
indicated in line 10. The data is then displayed in lines 20 and 30.
The RESTORE statement in line 40 allows the data items read in
line 10 to be read again.

RESUME
• Applesoft
o Integer

RESUME is used in Applesoft BASIC to resume program exe­
cution after an ON ERR GOTO statement has branched program
control to an error routine.

146 Apple lie Users Handbook

Configuration

RESUME

If RESUME is executed without an error having previously
occurred, the program will stop, the system will hang, or an error
message may result.

RETURN
• Applesoft
o Integer

A RETURN statement is used to branch a program back to the
line where the last subroutine was called.

Configuration

RETURN

A subroutine is called with a GOSUB or ON/GOSUB statement.
When the subroutine has been completed, a RETURN statement
causes program control to return to the statement following the
most recently executed GOSUB or ON/GOSUB statement.

Example

RETURN

RIGHT$
• Applesoft
o Integer

The RIGHT$ statement is used to return the rightmost characters
of a string.

Configuration

b$ =RIGHT$ (a$,c)

\

Apple BASIC Reference Guide 147

The RIGHT$ function returns a string value. The first argument is
a string constant or a string variable. The second argument is a
numeric value. The string returned consists of the number of
characters specified by the numeric argument. These characters
are the rightmost characters in the string argument.

Example

10 A$= "WILLIAM JONES"
20 PRINT A$
30 PRINT RIGt-IT$(A$,5)
]RUN [Ret]
WILLIAM JONES
JONES

The preceding example contains a program that uses a RIGHT$
statement. At line 10, the string variable A$ is assigned the value
"WILLIAM JONES". At line 20, the value of A$ is printed. At line
30, the rightmost 5 characters of the value of A$ are displayed.

If the value of the numeric argument exceeds the length of the
string argument, the entire string value is returned. If the value
of then u meric argument is less than one or greater than 255, the
following error message will be displayed:

ILLEGAL QUANTITY ERROR

• Applesoft
RND • Integer

The RND function is used to generate "random" numbers.

Configuration

X=RND(a)

In Applesoft BASIC, RND will return a random number greater

, 148 Apple lie Users Handbook

than or equal to zero and less than one. If RN D's argument (a) is
positive, a new random number will be generated each time
RND is executed.

RND can also be used with a negative argument. The same
random number will be returned when RND is executed with
the same negative value for a.

If the same negative argument is repeated followed by RND
statements with positive arguments, the same series of random
numbers will be generated. This is illustrated in the following
example.

Example

100 PRINT RND (-1)
200 PRINT RND (3)
300 PRINT RND (.22)
400 PRINT RND (.33)
500 PRINT RND (-1)
600 PRINT RND (.99)
700 PRINT RND (2.7)
800 PRINT RND (.77)
]RUN [Ret]
2.991~6472E-08

.738107502

.272707136

.299733446
2. 99196472E-08
.738207502
.272707136
.299733446

In Applesoft BASIC, if a= 0, RND will return the most recently
generated random number.

In Integer BASIC, RND returns a random integer with a value
greater than or equal to zero but less than a.

ROT=

Apple BASIC Reference Guide 149

• Applesoft
o Integer

ROT= sets the amount of rotation for a shape which is to be
drawn with either DRAW or XDRAW.

Configuration

ROT=x

x can range from 0 through 255. The shape will be rotated 90
degrees clockwise for every increment of 16 in the value of x. For
example, ROT=O causes the shape to be drawn in the same
position in which it was originally defined. ROT=16 causes the
shape to be rotated 90° clockwise. ROT=32 causes the shape to
be drawn upside down. ROT=64 causes the shape to be drawn in
its original position.

The number of actual different rotations is limited by the SCALE=
setting. Lower SCALE= settings will have fewer noticeable
rotations. When SCALE= is set to one, there are only eight
noticeable ROT= values. They are 0,8,16,24,32,40,48,56 and
numbers greater than 63 which would use the MOD64 equi­
valent. If a number other than 0,8,16,24,32,40,48, or 56 is used, the
shape will generally be drawn with the lower corresponding
ROT= value.

ROT= is only regarded as a reserved word if the equal sign (=) is
placed immediately following ROT without any intervening
blanks, spaces or characters.

Example

ROT=32

The ROT= statement given in our example would cause a shape
previously defined by DRAW or XDRAW to be rotated 180
degrees.

150 Apple lie Users Handbook

• Applesoft
RUN • Integer

RUN is used to execute the BASIC program currently stored in
memory. Prior to program execution, all variables, pointers, and
stacks will be cleared.

Configuration

RUN [/inenumber]

If /inenumber is specified, execution will begin at the specified
line. If no linenumber is specified, execution will begin with the
lowest line number. If a non-existent linenumber is specified,
one of the following error messages will result:

***BAD BRANCH ERR Integer
?UNDEF'D STATEMENT ERROR Applesoft

In Integer BASIC, RUN can only be executed in the immediate
mode.

• Applesoft
SAVE • Integer

The SAVE command is used to store a program on diskette or
cassette.

Cassette
Diskette

Configuration

SAVE
SAVE filename [Dx] [,Vx] [,Sx]

When using the cassette SAVE, the cassette recorder's Play and
Record keys must be depressed when SA VE is executed.

The lie will beep when it begins to save the program and will

Apple BASIC Reference Guide 151

beep a second time when the recording has been completed. At
this time, the operator should stop the cassette recorder.

SAVE is only interpreted as 'a BASIC reserved word when used
with the cassette unit.

In the DOS SAVE, SAVE need only be entered with the program's
filename and the return key pressed. If the indicated filename
duplicates that of a file in the same language already on the
diskette, the contents of the original program will be erased and
replaced with the new program. If the indicated filename
duplicates that of a file in a different language or with a different
file type, the following message will be displayed:

FILE TYPE MISMATCH

Example

SAVE

SCALE=
• Applesoft
o Integer

SCALE= is used to set the size of shapes drawn by ORA W or
XDRAW in high resolution graphics.

Configuration

SCALE=x

The integer value of xis multiplied by the size of the shape table.
Therefore, when SCALE=1, a shape is drawn with the same scale
as that with which it was defined. SCALE=2 causes the shape to be
drawn at twice its defined size, etc. SCALE=O causes the shape to
be drawn at 256 times its defined size.

152 Apple lie Users Handbook

Example

10 REM SET UP SCREEN
20 TEXT:HGR
30 FOR X = 7936 TO 7946
40 READ V:REM READ IN SHAPE
50 POKE X,V:REM POKE SHAPE INTO MEMORY
60 NEXT X
70 REM TELL WHERE SHAPE IS AT
80 POKE 232,0: POKE 233,31
90 HCOLOR = 3

100 ROT= 0
110 FOR X = 10 TO 273 STEP 24
120 INPUT "ENTER SCALE ";S
130 IFS < 1THENX=273: GOTO 160
140 IFS > 50 THEN X = 273: GOTO 160
150 SCALE= S: DRAW 1 AT X,100
160 NEXT X
170 DAT A 1,0,4,0,39,36,45,53,54,63,0
180 END

In the preceding example, line 20 initialized the screen so that
graphics could be drawn. The shape table was then read using
the FOR NEXT loop in lines 30 to 60. Line 80 POKE'd the starting
address of the shape. Lines 90 and 100 defined a color and
rotation for the shape. Lines 110to160 then prompted the user to
enter a scale size. The number entered will be the size of the next
shape drawn on the screen. The program will then exit after the
entry of eleven sizes or when the value entered is less than one
or greater than fifty.

• Applesoft
SCRN • Integer

SCRN is used in the low resolution graphics mode to return the
color code of the point specified as its argument.

Apple BASIC Reference Guide 153

Configuration

SCRN (x,y)

x and y can range from 0 to 47. If x is in the range from 0 to 39,
SCRN will return the color code of the point whose column is
indicated by x and whose row is indicated by y.

If x is in the range from 40-47 and y is in the range from 0-31,
SCRN will return the color of the point whose column is equal to
x-40 and whose row is equal to y+16.

If xis in the range from 40-47 and y+16 is in the range from 39-47,
SCRN will return a number related to the text character in the
text area before the graphics screen. If y+16 is in the range 48-63,
SCRN will return a meaningless number.

When x is in the range 0-39 and y is in the range 0-23, the
following expression will return the ASCII code of the character
at that position.

SCRN (a, 2*6) + 16*SCRN (a, 2*b+1)

The character itself will be returned when the CHR$ function is
executed using the value returned by the above expression as its
argument.

When SCRN is executed in the high resolution graphics mode,
SCRN will continue evaluating the low resolution area of
memory. _The value returned by SCRN will have no relation to
the high resolution screen.

SCRN is only regarded as a reserved word when the next non­
space character is the left parenthesis.

154 Apple lie Users Handbook

10 GR
20 COLOR= 2
30 PLOT 20,10
40 COLOR =6
50 PLOT 30,35

Example

60 PRINT SCRN(20,10), SCRN(30,35), SCRN(10,0)
70 END

In the preceding example, line 10 initializes the low resolution
screen. Lines 20 to 50 plot two different colored dots on the
screen. Line 60 displays the color value of the corresponding
dots. Notice that the value of SCRN(10,0) is zero. There is a black
dot at that position.

• Applesoft
SGN • Integer

The SGN function returns a +1 if its argument is positive, a -1 if
negative, and a 0 if zero.

Configuration

SGN (a)

Example

100 A= 100
200 X = SGN(A)
300 PRINT X
400 END
]RUN [Ret]
1

SH LOAD

Apple BASIC Reference Guide 155

• Applesoft
o Integer

SHLOAD is used in Applesoft BASIC to load a high resolution
shape table into memory from cassette tape.

Configuration

SH LOAD

The shape table will be loaded in memory immediately below
HIMEM. HIMEM will be set just underneath the shape tabfo in
order to protect it.

Be certain that HIMEM: has been set so that the execution of
SHLOAD will not erase any programs or variables.

SIN
• Applesoft
o Integer

The SIN function returns the sine of the angle specified as its
argument. The argument will be assumed in radians.

Configuration

X =SIN (a)

Example

PRINT SIN (3.1415927/2)
.999999992

156 Apple lie Users Handbook

SPC
• Applesoft
o Integer

The SPC statement is used to insert spaces in a PRINT statement.

Configuration

SPC (a)

The argument of the SPC statement specifies the number of
blank spaces that will occur.

Example

10 x =4
20 y = 6
30 PRINT X;SPC(5);Y
40 END
]RUN [Ret]
4 6

In the previous example, the values of the variables X and Y are
printed at line 30. The SPC statement within the PRINT statement
causes the output to be separated by 5 extra spaces.

SPEED
• Applesoft
o Integer

The SPEED statement sets the speed at which characters are
output.

Configuration

SPEED= x

x can range from 0 to 255, with 0 being the slowest speed and 255
the fastest.

Apple BASIC Reference Guide 157

SQR

SQR returns the square root of its argument.

STOP

Configuration

SQR (a)

Example

10 x = 49
20 PRINT SQR (X)
]RUN [Ret]
7

• Applesoft
D Integer

• Applesoft
o Integer

The STOP statement causes a halt in the execution of an
Applesoft BASIC program.

Configuration

STOP

If STOP is executed in the program mode, the following screen
message will be displayed,

BREAK IN XXX

where XXX is line number where STOP was executed.

CONT can be used to rescue program execution after it was
halted by the execution of a STOP statement.

158 Apple lie Users Handbook

Example

10 INPUT X
20 IF X = 10 THEN STOP
30 PRINT X
40 END

In the preceding example, if a value of 10 is input for X in line 10,
the program execution will stop and the following message will
be displayed.

BREAK IN 20

By entering CONT, program execution will resume with line 30.

STORE
• Applesoft
o Integer

The STORE statement is used to save an Applesoft array on
cassette tape. STORE is generally used in conjunction with the
RECALL statement.

Configuration

STORE array

For an explanation of STORE please refer to RECALL on page 141.

STR$
• Applesoft
o Integer

STR$ returns the string representation of its argument.

Configuration

X$ = STR$(a)

Apple BASIC Reference Guide 159

Example

10 A$= STR$(40)
20 PRINT A$
30 END
]RUN [Ret]
40

In the preceding example, the string variable A$ is assigned the
string value" 40". The STR$ function converts the numeric value
40, to the string value "40".

TAB
• Applesoft
o Integer

In Applesoft BASIC, the TAB function moves the cursor to the
right to the column specified as its argument. TAB must be used
with a PRINT state'ment in Applesoft BASIC

Configuration

TAB (column)

TAB erases existing screen data as it moves to the right. If the
specified column is not to the right of the current column
position, the cursor will not move.

column can range from 1 to 255. If column is greater than that
allowed for the output device (80 for video display) , the cursor
will move down to the next output line before tabbing will
continue.

160 Apple lie Users Handbook

10 X=1:Y=2
20 PRINT
30 PRINT X;
40 PRINT TAB(120);
50 PRINTY
60 END

In the preceding example, Xis output at the leftmost column of
the display line.TAB then moves the current print position to the
middle of the next display line where Y is output. In Applesoft
the TAB statement after produces erratic results if it is not the first
item in the PRINT statement output list.

TAB
o Applesoft
• Integer

In Integer BASIC, TAB positions the cursor at the specified
column on the display line where the cursor is located.

Configuration

TAB column

In Integer BASIC, the cursor will be moved to the left or right
depending on the value of column and the current cursor
position . column can range from 1 to 255. Existing screen data is
not erased if TAB causes the cursor to move over that data.

Example

10 PRINT
20 X = 1:Y=2
30 PRINT X:TAB 20:PRINT Y:TAB 10:PRINT Y
40 END
> RUN [Ret]

1

2
2

Apple BASIC Reference Guide 161

TAN
• Applesoft
o Integer

TAN returns the tangent of its argument in radians.

TEXT

Configuration

a=TAN(b)

Example

10 A= T AN(35*3.141593/180)
20 PRINT A
]RUN [Ret]
.700207639

• Applesoft
• Integer

TEXT returns the screen to the text mode from any of the
graphics modes.

Configuration

TEXT

TEXT does not necessarily clear the screen.

• Applesoft
TRACE • Integer

TRACE displays the line number of each statement as it is
executed. Generally, TRACE is used as a debugging tool.

162 Apple lie Users Handbook

Configuration

TRACE

TRACE can be turned off by executing NO TRACE.

US fl
• Applesoft
o Integer

USR passes program control to a machine language subroutine.
USR's argument is evaluated and then placed in the floating
point accumulator (9DH and A3H). A USR is then undertaken to
OAH, which is the subroutine's starting address.

Addresses OAH to OCH must contain a JMP to the starting address
of the machine language subroutine.

Since USR is a function, it returns a numeric value. The value in
the accumulator is returned when an RTS instruction is executed.

Example

10 POKE 10,76 : POKE 11,0 : POKE 12,32
20 FOR X = 8192 TO 8198
30 READ V
40 POKE X,V
50 NEXT X
60 FOR X = 1 TO 4
70 PRINT X, USR(X)
80 NEXT X
90 DATA 165,157,105,3,133,157,96

100 END

In the preceding example, line 10 pokes the location of the
machine language program to be executed. Lines 20 to 40 place
the program in memory. Lines 60 to 80 then make use of the
machine language program. The USR in this example multiplies
the argument by 16.

VAL

Apple BASIC Reference Guide 163

• Applesoft
o Integer

The VAL function converts its string argument to a numeric
value. The numeric characters in the string argument will be
converted to their numeric equivalents until an unacceptable
string character is encountered. The acceptable characters
consist of the digits (0-9), the decimal point, a leading plus or
minus sign, blank spaces, and in scientific notation an additional
plus or minus sign, the letter E (for exponent), and an additional
decimal point.

If the first character encountered by VAL is an unacceptable
character, a value of zero is returned.

VLIN

Configuration

VAL (a$)

Example

10 A$="1.731E+02"
20 8$ = "+97.5"
30 C$ = "57CA"
35 D$ = "E59"
40 PRINT V AL(A$)
50 PRINT VAL(B$)
60 PRINT VAL(C$)
70 PRINT V AL(D$)
]RUN [Ret]
173.1
97.5
57
0

• Applesoft
• Integer

VLIN is used to draw a vertical line in low-resolution graphics.

I'

164 Apple lie Users Handbook

Configuration

VLIN row 1, row 2 AT column

A vertical line will be drawn at the specified column from row 1
to row 2. The color of the line will be determined by that
specified in the last COLOR statement executed.

row 1 and row 2 must be in the range of 0 to 47. column must lie
in the range 0 to 79. If a value outside of these ranges is used, the
following error message will be displayed:

ILLEGAL QUANTITY ERROR

If VLI N is executed in the text mode, then a line of characters will
be displayed rather than a line of graphics dots. This also occurs
in the text window in the GR mode.

VTAB

Example

10 GR
12 COLOR= 3
15 FOR I = 1 TO 20
20 VLIN10,30ATI
25 NEXT I
30 END

• Applesoft
• Integer

VT AB moves the cursor to the indicated row on the screen. VT AB
causes the cursor to move up and down but never sideways.

Configuration

VTAB row

row can range from 1 to 24. A row value outside of that range

Apple BASIC Reference Guide 165

results in the following error message:

WAIT

ILLEGAL QUANTITY ERROR

Example

5 HOME : REM CALL -936
10 PRINT "ROW 1"
20 VTAB 2:PRINT "ROW 2"
30 VTAB 10:PRINT "ROW 10"
40 VT AB 20: PRINT "ROW 20"
50 END

• Applesoft
o Integer

WAIT can be used to suspend operation of an Applesoft BASIC
program until a designated memory address is assigned a
specified value.

Configuration

WAIT address, value 1, [value 2]

address specifies the memory address whose value is to be
decided. value 1 and value 2 are compared with address to
determine whether the program proceeds or continues to wait.

address can range from -65535 to 65535. value 1 and value 2 can
range from 0 to 255. When WAIT is executed, value 1 and value 2
are converted to their binary equivalent in the range frnm 0
through 11111111.

When address and value 1 are the only arguments indicated with
WAIT, each of the eight bits in address are AND'ed with each
corresponding bit in the binary equivalent of value 1. If the result
of the AND operation is non-zero for any one bit (the bit had a
value of 1 in both address and value 1), the WAIT statement will

166 Apple lie Users Handbook

be completed and execution will be resumed. Otherwise, this
test will continue until a non-zero value is returned.

When value 2 is also specified, a two-part comparison process is
used. First of all, each of the eight bits at address are XOR' ed with
the corresponding bit in value l's binary equivalent. Second, the
result of the XOR comparison is AND'ed with the corresponding
bit in value 1's binary equivalent. If a non-zero value is returned
for any comparison, the program will proceed. Otherwise, the
test will continue.

Example

10 REM SET ADDRESS FOR GAME CONTROL 0 TO 0
20 POKE 49168,0
30 PRINT "THE PROGRAM HAS STARTED"
40 PRINT:PRINT
50 PRINT "EXECUTION WILL BE HALTED UNTIL

THE BUTTON ON GAME CONTROL 0 IS PRESSED"
60 PRINT:PRINT
70 WAIT -16287,128
80 PRINT "THE BUTTON WAS PRESSED"
90 PRINT "THE PROGRAM WILL NOW END"

XDRAW
• Applesoft
o Integer

XDRAW is used to draw a graphics shape in high resolution
graphics.

Configuration

XDRAW shape [AT column, row]

The color, scale, and rotation of the shape to be drawn must have
been specified previously. shape denotes the number from the
shape table of the shape to be drawn. shape must have a value

Apple BASIC Reference Guide 167

between 0 and the number of shapes in the table. The optional
column and row denote the starting x and y coordinates for the
shape.

XDRAW uses the color which is the compliment of the color
which already exists at each point being plotted. The com­
plementary colors are as follows:

O(Black)
1(Green)
4(Black)
5(0range)

3(White)
2(Violet)
7(White)
6(Blue)

One other feature of XDRAW is that it allows a shape to be easily
erased. If a shape is XDRAWn and then XDRAWn again with the
same parameters, the shape will be erased without erasing the
background.

Example

10 REM SET UP SCREEN
20 TEXT:HGR
30 FOR X = 7936 TO 7946
40 READ V:REM READ IN SHAPE
50 POKE X,V:REM POKE SHAPE INTO MEMORY
60 NEXT X
70 REM TELL WHERE SHAPE IS AT
80 POKE 232,0: POKE 233,31
90 REM PUT UP A BACKGROUND

100 HCOLOR = 3
110 HPLOT 20,20 TO 60,20 TO 20,70
120 PRINT "BACKGROUND SET UP"
130 INPUT "PRESS RETURN TO DISPLAY SHAPES";A$
140 ROT=O
150 SCALE = 10
160 XDRA W 1 AT 50,30
170 SCALE= 6
180 ROT= 4
190 XDRAW 1 AT 20,70

program continued on next page

168 Apple lie Users Handbook

200 INPUT "PRESS RETURN TO ERASE SHAPES"; A$
210 XDRA W 1 AT 20,70
220 SCALE= 10
230 ROT= 0
240 XDRA W 1 AT 50,30
250 DAT A 1,0,4,0,39,36,45,53,54,63,0
260 END

In the preceding example, line 20 initialized the screen so that
graphics could be drawn. The shape is then read in the FOR
NEXT loop in lines 30 to 60. Since Applesoft needs to know where
the shape was placed, the shape address is POKE'd into memory
in line 80.

A color is defined in line 100. The color definition is only
necessary for the background, which consists of two lines.
XDRAW does not need to define the color, however the size and
the rotation should be defined. These are defined on lines 140,
150, 170, 180, 220 and 230.

The two shapes, with different sizes, rotations, and positions, are
then XDRAW'n to the screen in lines 160 and 190. Notice that the
shapes were drawn over the background (two lines). The two
shapes were then drawn again over the previous shapes in lines
210 and 240. Because XDRAW plots the compliment of the color
that is on the screen, it will erase the previous shape and keep the
background intact.

\
' l

CHAPTER 5. CASSETTE AND DISK
STORAGE WITH THE APPLE lie

Introduction

Generally, a disk drive is used for storage with the Apple lie.
However, a cassette recorder can also be used with the lie for
data storage. In this chapter, we will discuss cassette storage
procedures followed by disk storage procedures.

If you are using the cassette recorder rather than the disk unit for
data storage, keep the following points in mind:

• DOS is not available when using the cassette.
Applesoft and the Monitor are the only
available systems software.

• Since Integer BASIC is loaded from diskette, it is
not available on cassette. Therefore, Integer
BASIC programs cannot be loaded and run
from cassette.

CASSETTE INSTALLATION & OPERATION

Nearly any standard cassette recorder can be used with the lie.
The cassette unit is installed by attaching a double cable (or two
individual cables) from the cassette in and out jacks at the rear of
the lie to the jacks on the cassette recorder. One cable should
connect the cassette input jack on the lie to the earphone or
monitor jack on the cassette recorder. The other cable should
connect the lle's cassette output jack to the cassette recorder's
microphone jack.

The cassette unit is operated in much the same manner with the
lie to record data as it is used to record sound. The play and
record keys must be depressed to save data on the cassette. The
play key must be depressed when data is to be read from the
cassette into RAM. The rewind and fast forward keys are used to
position the tape.

170 Apple lie Users Handbook

You may find it necessary to adjust the tone and volume controls
in order for the cassette to properly record data. The easiest
mean.s of doing this is to try saving and reloading a program. If
the program can be saved and then reloaded without any
difficulties , the volume and tone controls are adjusted properly.
If one of the following error messages appears :

ERR
***SYNTAX ERR

set the volume control higher and again attempt the saving and
loading process.

SAVING & LOADING A PROGRAM ON CASSETTE

The SA VE command is used to save a program from RAM to the
cassette recorder. Prior to executing SAVE, be certain that a
. cassette has been placed in the cassette recorder and that the
tape has been positioned as desired . Then , press the recorder's
play and record keys and enter the following command at the
keyboard :

SAVE [Ret)*

The Apple lie will beep once as it begins recording the program
on tape, and will beep a second time when the recording process
has been completed. After the second beep, press the recorder's
stop key.

*[Ret] indicates that the return key should be pressed.

Cassette and Disk Storage with the Apple lie 171

If you wish to load a program from cassette tape into RAM, first
of all enter NEW in order to erase any existing program lines
from memory. Be certain that the tape has been rewound to the
beginning point of the program to be loaded. Press the re­
corder's play key, and enter the following command:

LOAD

The Apple lie will beep once as the loading process begins and a
second time when it ends. After the second beep, press the
recorder's stop key. You can verify the fact that the program has
been loaded by executing LIST.

Storing & Loading Data on Cassette

Numeric arrays can be stored and loaded on cassette using
Applesoft's STORE and RECALL statements. These are discussed
in detail in Chapter 4.

The Monitor's memory write and memory read commands can
also be used to store and read data to and from tape. These will
be discussed in detail in Chapter 7.

Apple lie Disk Storage

A disk drive can also be used with the Apple lie to store data
and/or programs. Disk storage is much more efficient than
cassette tape storage. The majority of I le owners are expected to
use disk drives as their primary means of data storage.

TYPES OF DISKS

There are three primary types of disks used by personal
computers; hard disks, Winchester disks, and floppy diskettes.
These will be described in the following sections.

Hard Disks

Microcomputer hard disk systems generally allow storage of 5 to
30 megabytes of data. One megabyte is the equivalent of one

172 Apple lie Users Handbook

million bytes. The hard disk itself is made of a rigid material with
a magnetic coating. The disk drive and the hard disk are separate
units . The operator can remove one hard disk and replace it with
another.

Winchester Disk Drives

Winchester disk drives are designed so that from 6 to 10 times
more data can be stored on their surface than on a standard
floppy diskette. Winchester disks must be kept very clean as they
are extremely vulnerable to dust, dirt and smoke.

Since they must be kept so clean, Winchester disks must be
sealed inside of the disk drive. This means that Winchester disks
cannot be changed.

Since Winchester disks cannot be removed, floppy disk systems
often are used in conjunction with Winchester disks to allow for
back-up storage. Winchester disk systems are generally used
with microcomputers rather than hard disk systems. A Win­
chester drive is shown in Illustration 5-1.

Cassette and Disk Storage with the Apple lie 173

Illustration 5-1. Winchester Disk System

Floppy Diskettes

The most widely used type of disk storage with microcomputers
is floppy disk storage. The Disk II Drive (used with the lie) is a
floppy disk drive. A floppy diskette consists of a round vinyl disk
which is enclosed within a plastic cover. The diskette is generally
stored in a diskette envelope.

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed
from its cover. A 51/.i inch diskette with its protective envelope is
shown in Illustration 5-2.

The diskette is allowed to rotate within the protective envelope.
The round hole in the middle of the diskette allows the disk drive
to hold the diskette and spin it. The oblong shaped opening on

174 Apple lie Users Handboo'k

the protective envelope provides an area where the head can
read from or write to the diskette surface.

Illustration 5-2. Mini-Floppy Diskette

Floppy diskettes come in two sizes: 8 inch and 51/.i inch. The 51/.i
inch diskettes are also known as mini-floppy diskettes. Apple's
Disk 11 drives use mini-floppy diskettes.

Tracks and Sectors

To facilitate the process of searching for data on the diskette
surface, that surface is divided into tracks and sectors.

Tracks may be visualized as a series of concentric circles on the
diskette surface, as shown in Illustration 5-3.

Cassette and Disk Storage with the Apple lie 175

Illustration 5-3. Tracks and Sectors

\

In Apple 's Disk II system, the diskette is divided into 35 different
tracks.

To further reduce the time necessary to search for a particular
data item, Apple's DOS* divides each track into 16 sectors (see
Illustration 5-3.)

Each sector can store up to 256 bytes of information . When the
Disk !l ' s read/ write head* is in place over a specific track, that
track 's 16 sectors will pass one by one underneath the read/ write
head as the diskette rotates.

Whenever DOS reads or writes information from the diskette, it
does so in groups of 256 bytes. In other words, data is read from
or written to the diskette one sector at a time.

*DOS stands for disk operating system which will be explained in
detail later.

176 Apple lie Users Handbook

Hard and Soft Sectoring

Locating a particular track on the disk surface is a relatively
uncomplicated matter. The drive merely moves the head to the
position on th ~ diskette where the specified track is located,
much like the needle on a phonograph is positioned to the
location of a specific song on a record album.

However, locating a particular sector is a more difficult process.
Two different methods are used to locate sectors on a disk; hard
sectoring and soft sectoring.

Both the hard and soft sector methods involve the use of an
index hole. The index hole is shown in Illustration 5-2. It is
located just to the right of the large hole in the middle of the 51/.i
inch diskette.

The index hole as shown in Illustration 5-2 is a hole only in the
diskette's protective covering. Another index hole is located on
the actual diskette surface inside the envelope. As the diskette
spins, the index hole (or holes) on the diskette surface passes
underneath the hole in the protective envelope.

A light source inside the disk drive shines light onto the area of
the diskette containing the index hole. When an index hole on
the disk surface is aligned with the index hole on the protective
envelope, the light will shine through to a sensor. The sensor will
relay information on the location of the index holes, which can
be used to calculate the various sector locations.

Now that we have discussed the concepts of locating sectors, we
will discuss the difference between hard and soft sectored
diskettes. A hard sectored diskette contains a number of holes,
each of which indicates the location of a sector. An extra hole is
used to indicate the location of the first sector. The location of

*The disk drive contains a device known as a read/write head,
which is used to read and write information . The computer can
move the head to any position desired on the disk surface.

Cassette and Disk Storage with the Apple lie 177

the various sectors is determined by counting the number of
holes occuring after the first sector. A hard sectored diskette is
depicted in Illustration 5-4.

Soft sectored diskettes have only one index hole as shown in
Illustration 5-5. This solitary index hole marks the location of the
first sector. By timing the rotation speed of the floppy diskette,
the location of the other sectors can be determined . The Apple
lie Disk System uses soft-sectored diskettes.

Illustration 5-4. Hard Sectored Diskette

2 Index Holes

Illustration 5-5. Soft Sectored Diskette

Index Hole

178 Apple lie Users Handbook

Single and Double Sided Diskettes

Some floppy diskettes are designed to be written on only one
side. These are known as single sided (SS) diskettes.

Diskettes which are designed to be written on both sides are
known as double sided (DS) diskettes.

Single, Double, and Quad Density Diskettes

Density refers to a diskette's recording format, which in turn
affects its capacity. Double density diskettes generally have a
greater recording capacity than single density diskettes, while
quad density diskettes generally have a greater capacity than
either single or double.

The Apple lie Disk Drive uses double-density diskettes with a
capacity of 143,250 bytes.

Diskette Write Protection.

Diskettes have a notch on the side of their protective envelope
which determines whether or not data can be written onto that
d iskette. On 8 inch diskettes, this notch is known as a write­
protect notch. On 51/.i in~h diskettes, it is known as a write­
enable notch .

On a 8 inch diskette, information cannot be written onto the
diskette unless this notch has been covered . On 51/.i inch
diskettes, information cannot be written onto the diskette unless
the notch is left uncovered.

Some 51/.i inch diskettes (especially system' diskettes) may be
permanently write protected if their protective envelope does
not contain a notch. Any 51/.i inch diskette with a notch can be
write protected by merely covering the notch with a piece of
tape as shown in Illustration 5-6.

Cassette and Disk Storage with the Apple lie 179

Illustration 5-6. Write Protecting a 51;4 inch Diskette

Diskette Handling Rules

Diskettes are easily damaged. Therefore, certain rules should be
observed when handling or storing diskettes.

First of all, keep your diskettes clear of magnetic fields. Most
devices with electric motors contain magnetic fields as do most
telephones. Keep your diskettes clear of appliances with electric
motors and telephones. However, it is safe to place diskettes on
top of the I le or the Disk II unit.

When writing on a diskette label, do so only with a felt tip pen.
Never use a pencil or a ball point pen. Doing so can damage the
diskette surface.

Exposure to the sun or to extreme heat can cause diskettes to
warp. Be certain to keep your diskettes out of direct sunlight and
away from heat sources.

180 Apple lie Users Handbook

Never touch the actual exposed surface (brown or grey) of the
diskette. Handle only the diskette's black plastic cover. A
scratch, fingerprint, dirt, or grease mark can cause a loss of data.

Inserting and Removing a Diskette

Before a diskette can be inserted, the drive door must be
opened. This is accomplished by gently pulling outward on the
drive door lever.

The diskette is inserted into the drive with its label facing
upwards, as shown in Illustration 5-7. Slide the diskette gently
into the device until it clicks into place and then close the drive
door.

To remove a diskette, merely open the drive door and gently pull
the diskette out of the drive.

Illustration 5-7. Inserting a Diskette

Cassette and Disk Storage with the Apple lie 181

DISK OPERA TING SYSTEMS

An operating system can be defined as a group of programs
which manage the computer's operation. A disk operating
system can be defined as a group of programs that manage the
transfer of data to and from a storage device such as disk or
magnetic tape.

The standard operating system provided with an Apple I le with a
Disk Drive II is Apple DOS,3.3 (referred to simply as DOS). Other
operating systems such as PASCAL and CP/ M are also available
for the Apple I le.

Apple's DOS will be discussed in detail in this chapter.

DISK II SYSTEM

The name of the floppy disk drive used by the Apple lie is the
Disk II. The Disk II system includes the disk drive (see Illustration
5-8), disk controller card (see Illustration 5-9), a cable used to
connect the disk controller card to the disk drive (see Illustration
5-9), a System Master diskette, and a BASICS dis~ette.

Installing The Disk II System

First of all, open the rectangular opening l~beled 1 on the rear of
the lie. Next, insert the free end of the cable connected to the
Disk II through this opening.

Locate one of the U-shaped clamps and two jack screws (see
1 llustration 5-10) . Find the metal bar on the cable. Open the
clamp slightly and slide it over the cable and the metal bar. The
flat side of the clamp should be positioned against the cable. The
raised side of the clamp should be positioned against the metal
bar. Feed the cable through rectangular opening #1 until the
clamp can be placed in the opening. Position the clamp in the
opening, and install the jack screws into the nuts on the clamp.
Tighten the screws with a small wrench.(See Illustration 5-11.)

182 Apple lie Users Handbook

Illustration 5-8. Disk II Drive

Illustration 5-9. Disk Contoller Card and Cable

Cassette and Disk Storage with the Apple lie 183

Illustration 5-10. Inserting Clamp over Cable and Metal Flap

Illustration 5-11. Installing the Clamp on the Rear
of the Apple lie

184 Apple lie Users Handbook

Next, install the cable from drive 1 to the pins labeled DRIVE 1 on
the disk drive controller card. (See Illustration 5-12.)

Be sure to install the disk drive cable into the controller card
before the card has itself been installed in the Apple lie. Doing
otherwise could result in damage.

Also, be certain that the disk cable connector has been properly
inserted into the pins on the controller card. A faulty connection
can result in damage.

Illustration 5-12. Installing the Disk Drive
Cable to the Disk Controller Card.

Cassette and Disk Storage with the Apple lie 185

Once the disk cable connectors have been properly connected
to the disk controller card, the installation of the Disk II system
can be completed by merely plugging the controller card into
slot 6.

Before installing the disk controller card (or any other card), be
certain that the power switch at the back of the lie is off. If the
power is on when a card is installed or removed, damage could
result to the card, the lie, or to both.

If you wish to install a second drive, follow the same procedure
except insert the disk drive cable through opening #2 on the rear
of the lie, and attach the disk drive cable to the pins labeled
DRIVE 2 on the disk controller card.

If you wish to install a third or fourth drive, a second disk
controller card will have to be installed in slot 4. Insert the drive
cables through openings 3 and 4 on the lle's rear panel. The
cable connector for drive 3 should be installed on the pins
labeled DRIVE 1 on this disk controller card. The cable connector
for drive 4 should be installed on the pins labeled DRIVE 2 on this
card.

If you are installing more than one drive, it is a good idea to label
your drives so as to prevent possible confusion. Remember that
DOS must be booted from drive 1.

BOOTING DOS

There are several different methods of booting DOS on the
Apple lie depending upon how your lie system is configured as
well as from which language DOS is being booted.

Autostart Boot

The autostart boot is the easiest method of booting DOS 3.3 .
With the Apple lie powered off, place the System Master
Diskette in drive 1 and close the drive door. Then, turn the lle's
power on. The disk will spin for a few seconds and then stop. The
screen display will resemble that depicted in Illustration 5-13.

186 Apple lie Users Handbook

Booting from Integer or Applesoft BASIC

The prompt character for Integer BASIC is the greater than sign
()).The prompt for Applesoft BASIC is the left bracket (]).The
same commands can be used to boot DOS from either Integer or
Applesoft BASIC. This command consists of the letters IN or PR
followed by the pound sign(#) and the slot number containing
the controller card (generally (6). The boot command should
resemble one of the following :

PR#6
IN#6

Once the boot command has been entered, press the return key.
Again, the drive will spin for several seconds, afterwhich the
screen display depicted in Illustration 5-13 will appear.

Illustration 5-13. DOS Start-up Screen Display

APPLE II
DOS VERSION 3.3 SYSTEM MASTER

JANUARY 1, 1983
COPYRIGHT APPLE COMPUTER, INC.

1980, 1982
BE SURE CAPS LOCK IS DOWN

Booting from the Monitor

The asterisk(*) is the prompt for the assembly language monitor.
One method of booting DOS from the monitor is to enter the
following command and press return.

* C600G

This causes DOS to be booted from drive 1 (assuming the disk
controller card was installed in slot 6.)

Cassette and Disk Storage with the Apple lie 187

Another method for booting DOS from the monitor is to enter
the slot number of the drive to be booted from (generally 6)
followed by Ctrl-P and Return.

Restarting DOS

If the computer is already powered on, and you wish to restart
the System using DOS, you can do so by as follows :

1. Insert the DOS diskette in drive 1.
2. Hold down the Open Apple key simultaneously with Ctrl­

Reset. Release Ori-Reset and then release the Open Apple
key.

3. The computer will beep. The drive's in-use light will come on
and the drive will begin spinning.

4. When DOS has been loaded, the drive will stop and the DOS
initial screen display will appear on the screen.

Booting DOS Conclusion

Once you have booted DOS, you will still be able to execute
most of your BASIC commands in the same fashion as if DOS had
not been booted. A few BASIC commands wi ll have additional
capabilities under DOS. You will also have the option of
executing DOS commands.

This is not the case in other operating systems such as CP/ M
where DOS commands cannot be entered when BASIC is active
and vice versa.

Using 13-Sector Diskettes
While DOS 3.3 initializes diskettes with 16 sectors per track, the
earlier verison ot DOS (3.21 and 3.2) used diskettes with 13
sectors. The 13 sector diskettes can be run under DOS 3.3 by
using the BASICS diskette rather than the System Master in the
loading process. A prompt will appear instructing you to load
your 13 sector diskette. Remove the BASICS diskette, insert the
13 sector diskette, and press return. You can now use the 13
sector diskette.

You can also convert 13 sector diskettes to 16 sector by using the
CONVERT13 program located on the System Master. CON­
VERT13 does not actually change the diskette's format, but

188 Apple lie Users Handbook

instead copies tiles from the 13-sector diskette onto a 16-sector
diskette (previously initialized tor 16 sectors using INIT under
DOS 3.3).

Upon running the program (by executing RUN CONVERT13), a
menu will appear on the screen. Option 1 starts the conversion
process. You will be prompted tor the source and destination
slot and drive numbers as will as the filename. You should then
insert the diskette per your prompt response and press any key to

begin . Continue this process until all desired tiles on the 13
sector diskette have been transferred. When the process has
been completed, you can reintialize the old 13 sector diskette
under DOS 3.3 tor use as a 16 sector diskette.

A copy-protected 13-sector disk can also be used under DOS 3.3
by performing a two-disk startup. First of all, place the DOS 3.3
System Master in drive 1, close the drive door, and restart the
system. Then, enter the following command:

RUN START13

The following will appear:

Slot to boot from (DEFAULT= 6)

Place the 13-sector diskette in drive 1 and press return it your
disk controller card was installed in slot 6. Otherwise, enter the
number ot the slot where the controller card was installed.

Prompts

Once DOS 3.3 has been loaded, either DOS, Integer BASIC, or
Applesoft BASIC commands can be entered. The prompt dis­
played on the screen indicates to the user which commands the
lie will accept. When the Applesoft prompt (]) is displayed,
either Applesoft BASIC or DOS commands can be entered.
When the Integer BASIC prompt is displayed(::::>-), either Integer
BASIC or DOS commands can .be entered.

DOS does not have its own prompt. You can check whether or
not DOS has been loaded by entering a DOS command. If the
command works, DOS has been loaded. If the command does

not work, DOS has not been loaded with the I le, DOS is loaded
during start-up.

Cassette and Disk Storage with the Apple lie 189

Error Message Format -- DOS, Applesoft, lnterger

If an incorrect command is entered, an error message will be
generated. The format of the error message will indicate
whether that error was generated by DOS, Integer BASIC, or
Applesoft BASIC.

If a question mark precedes the error message, the error was
generated by Applesoft BASIC as indicated in the following
example:

? SYNTAX ERROR -Applesoft BASIC

If three asterisks precede the error message, the error was
generated by Integer BASIC as shown below:

***SYNTAX ERROR-Integer Basic

If no prefix precedes the error message, it was generated by
DOS. The following error message would be displayed under
DOS:

SYNTAX ERROR-DOS

DOS COMMANDS

In the following sections we will discuss the usage of the various
Apple DOS commands. These include:

APPEND
BLOAD
BRUN
BSA VE
CATALOG
CLOSE
DELETE
EXEC

INIT
LOAD
LOCK
MAX FILES
MON
NOMON
OPEN
POSITION

READ
RENAME
RUN
SAVE
UNLOCK
VERIFY
WRITE

190 Apple lie Users Handbook

Before discussing the individual commands, we will discuss
topics related to all of these commands. These topics include:

Filenames

Filenames
Drive Number Specification
Slot Number Specification
Volume Specification

In Apple's DOS, a file must be referenced using its filename.

DOS filenames must adhere to certain rules . First of all, a
filename must be from 1to30 characters in length. Any characters
in excess of 30 will be dropped (or truncated) . The first character
of the filename must be a letter. Any keyboard character except
the comma can be used in a filename.

Control characters can be included in filenames, although they
will not be displayed in catalog listings as they are nonprinting
characters. For example , the following filename:

TEXT1' iindicates pressing the Control key

would be displayed as TEXT in the catalog listing. However, if an
attempt was made to load the file using the filename TEXT, DOS
would not be able to locate the file .

Using control characters within filenames offers an effective
security measure, as others will not be able to identify the actual
filename .

Drive Specification

Generally, DOS commands allow the user to specify several
optional parameters including the diskette's volume numqer,
the slot containing the disk controller, and the disk drive being
used .

'Each disk controller can control two separate disk drives. If a disk

Cassette and Disk Storage with the Apple lie 191

drive is not specified in a DOS command, that command will
affect the diskette in drive 1. In other words, drive 1 is the default
drive.

If you wish the command to affect drive 2, end the command
with a comma followed by D2. The following command would
result in the directory for the diskette in drive 2 being displayed:

CATALOG, D2

Once D2 has been specified, all subsequent DOS commands will
affect the diskette in drive 2. In other words, drive 2 will now be
the default drive.

If you wish to change the drive affectedj)y DOS commands back
to drive 1, merely end your DOS command with a comma
followed by D1. The default drive will then be drive 1.

Slot Specification

If you wish to use more than two drives with your lie, an
additional controller card must be installed in one of the lle's
expansion slots. Generally, the second controller card is installed
in slot 4. Again two drives can be connected to this second
controller card.

If you wish to reference drives 3 and 4, you must use a second
parameter known as a slot parameter. You cannot reference
these drives as D3 and D4.

The slot parameter follows the DOS command just like the drive
parameter. The slot parameter must be separated from the DOS
command or drive parameter with a comma. The slot parameter
consists of the letter S followed by the slot number containing
the disk controller to be accessed.

The DOS command and any filenames must be specified first in
the command. However, the order of the parameters (drive slot)
is not critical.

192 Apple lie Users Handbook

For example, the following DOS command:

CAT ALOG,S4,D2

would acces the second drive installed on the controller card
installed in slot 4.

The default slot number will initially be the slot from which DOS
was booted. Regardless of the slot used to boot DOS, DOS must
always be booted from drive 1 rather than drive 2. If a slot
parameter is subsequently executed, the specified slot will be
the new default.

When using the slot parameter with DOS commands, be certain
that the specified slot contains a disk controller card. The follow­
ing error will appear if the specified slot does not contain a disk
controller card.

1/0 ERROR

DOS will then suppose that the specified drive (which is in fact
not connected to the system) is still running. DOS will wait for
this non-existent controller and drive to signal that it has stopped
running. In other words, DOS will be locked up even if the
correct slot is specified.

If you do not care to save the program in memory, recovery from
this error condition can be attained by simply pressing Reset. If
you wish to save the program in RAM, you can do so by resetting
the default slot parameter to the correct slot number. You can do
so by entering:

CATALOG, Sx

where x is a valid slot number.

Volume Specification

A volume number can be assigned to a diskette when it is
initialized. The volume number is specified during initialization

Cassette and Disk Storage with the Apple lie 193

using the following configuration :

Vx

where x can be any integer from 1 to 254.

If we wished to initialize a diskette in drive 2 attached to the
controller slot 4 using the name "BEGIN" for the greetings*
program, we could do so by issuing the following command :

** INIT BEGIN, 54, D2, V100

This command would assign the diskette a volume number of
100. The volume number cannot be changed unless the diskette
is reinitialized.

Again, the order of the disk, slot, and volume specifications is not
important. If a volume specification is not indicated, the diskette
will be assigned a volume number of 254.

If the volume number is specified with a DOS command, DOS
will check the diskette's volume number to be sure that it
corresponds with the volume number indicated with the DOS
command's V parameter. If you inadvertently specify the wrong
volume number or insert the wrong diskette, the following error
message will be displayed:

VOLUME MISMATCH

The use of the volume specification can prevent a diskette from
accidentally being O':'erwritten.

The DOS CATALOG command ignores the volume specification.
The volume number is displayed in the catalog listing.

*
**

This program is run when the diskette is booted.
INIT will be discussed in detail later in this chapter.

194 Apple lie Users Handbook

Syntax

We will use the following syntax rules in our discussion of DOS
commands.

DOS commands

DOS User Specified
Parameters

filename

D

s

v

indicated in uppercase characters.

indicated in lower-case italics.

indicates a filename.

indicates the drive specifier (1 or 2) .

indicates the slot number (1-7).

indicates the volume number (1-254).

These syntax conventions will be followed in the configuration
section for each DOS command .

CATALOG - Examining the Diskette's Directory

A diskette can contain a number of different programs or data
files . Each file generates a listing in the diskette's directory. A
diskette directory can be defined as a file oh the diskette
containing information relating to all other files stored on that
diskette. A directory is also often referred to as a catalog.

The directory in Apple DOS can hold up to 105 tile entries. The
directory is stored on track 17 ot the diskette, with the first entry
in sector 15 and the last in sector 1. Each directory entry includes
the tilename, tile type, number ot sectors (mod 256) used by the
file, and the location of the file's track sector list.

The CATALOG command can be used to display a diskette's
directory. Merely enter CATALOG ahd press return and a listing
similar to that in illustration 5-14 will appear. It your screen tills
with entries and the tlashing cursor appears at the bottom ot the
screen, only a portion ot the directory was displayed. Press any
key to continue the listing. When prompt appears(]) , the listing
will have been completed.

Cassette and Disk Storage with the Apple lie 195

Illustration 5-14. CATALOG Listing (System Master Diskette)

] CATALOG
DISK VOLUME 254

*A 006 HELLO
*I 018 ANIMALS
*T 003 APPLE PROMS
*I 006 APPLESOFT
*I 026 APPLEVISION
*I 017 BIO RHYTHM
*B 010 BOOT13
*A 006 BRIAN'S THEME
*B 003 CHAIR
*I 009 COLOR DEMO
*A 009 COLOR DEMOSOFT
*I 009 COPY
*B 003 qoPY.OBJ 0
*A 009 COPY A
*A 010 EXEC DEMO
*B 020 FID
*B 050 FPBASIC
*B 050 INTBASIC

Notice the first entry in the catalog listing is the disk volume
number.

Each file on the diskette contains a separate listing. This listing
identifies the type of data contained in the file, whether or not
the file is locked, the number of diskette sectors used by the file,
and the *filename.

*Filenames are discussed in the next section.

196 Apple lie Users Handbook

The one-letter code to the left of the list ing identifies the file
type. An A indicates an Applesoft program file, while I identifies
an Integer BASIC program file . AT indicates a text file, and a B
identifies a binary image file.

If a file is locked, its type code will be preceded by an asterisk(*).
If no asterisk appears, the file is unlocked. The concept of locked
and unlocked files will be discussed later in this chapter.

The number of sectors occupied by the file is displayed as a
3-digit number to the right of the file type. For example, from
Illustration 5-14, HELLO occupies 6 sectors.

\The minimum size of a diskette file is 1 sector. If a file exceeds 255
sectors, the sector catalogue listing number will be reset to zero
at 255 sectors. For example, a file with 287 sectors would be
displayed as 032 in the catalog listing.

Track/Sector List

One item also contained in the directory entry for a file (but not
displayed by a CATALOG listing) is the location of the sector that
contains that file 's track/sector list.

A track/ sector list consists of a list of the diskette locations used
by the file. The contents of a track/ sector list are summarized in
Table 5-1 .

If the track/ sector list extends beyond 122 file sector identifiers,
the links will point to one or more subsequent sectors of the
track/ sector list. Otherwise, the links will be set to 0.

Cassette and Disk Storage with the Apple lie 197

Table 5-1. Track/Sector List

Byte No. (Hex) Byte Contents

INIT

0 Unused

1 Link: Contains track number where track/ sector
list is continued.

2 Link: Contains sector number where track/
sector list is continued. If both link bytes=
0, the track/ sector list is not continued.

3-4 Unused

5-6 Sector base number (identifies groups of 122
sectors).

7-B Unused

C Track No. of First Sector in File

D Sector No. of First Sector in File

E Track No. of Second Sector in File

F Sector No. of Second Sector in File

10 Track No. of Third Sector in File

11 Sector No. of Third Sector in File

(Continuation)

FE Track No. of 122nd Sector in File

FF Sector No. of 122nd Sector in File

Before a diskette can be written to, it must first be initialized.
When a diskette is initialized, any existing data on the diskette is
erased, DOS is copied to the diskette, and any program in
memory is copied to the diskette.

The program copied shou Id be the greetings program. This is the
program which is automatically run when the diskette is booted.

198 Apple lie Users Handbook

The greetings program generally is assigned the filename HELLO,
however, any filename can be used .

Configuration

INIT filename* [Sx, Vx, Dx]

filename refers to the name assigned to the greetings program
(generally HELLO). S, V, and Dare the slot, volume, and drive
identifiers respectively.

The first step in initializing a diskette is to boot DOS. Once DOS
has been booted, remove the System Master Diskette from drive
1 and replace it with the diskette to be initialized. Then, type
NEW to clear the memory, and key in your greetings program.

The following is a typical greetings program:

100 REM GREETINGS PROGRAM 1
200 PRINT " SLAVE DISKETTE-DOS 3.3 64K SYSTEM"
300 PRINT "JW--JULY, 28, 1983"
400 END

The following information should be included in the greetings
program:

* filename is generally HELLO.

Cassette and Disk Storage with the Apple lie 199

• Whether the diskette is a slave* or master*
• Size of the System on which the diskette was created
• Date on which the diskette was initialized

i

Once the greetings program has been entered, enter the
following command:

INIT HELLO

After the INIT command has been entered, press the return key.
The disk will spin for about a minute as the diskette is being
initialized. When the initialization process has been completed,
the Applesoft prompt (]) will be displayed.

rr=.'i",-z.1.1"f ,t.~'J bnotj_nl& ~our newly initialized diskette. Upon booting,
the messages specified in your greetings program shou'1a appea1
on the screen.

Master and Slave Diskettes

INIT initializes a diskette as a slave diskette. A slave diskette's
DOS is memory size dependent. i.e. the diskette commonly can
be used on a system with the same amount of RAM as the system
on which the diskette was created.

A slave diskette can be converted to a master diskette by using
the MASTER CREA TE program on your System Master diskette. A
master diskette's DOS is self-relocating. This allows memory to
be allocated more efficiently.

The following procedure should be followed to convert a slave
diskette to a master.

Step 1: " Insert the slave diskette into the drive and run the greet­
ings program.

*Discussed later in this section .

200 Apple lie Users Handbook

Step 2: Edit the greetings program so that the initial message
displayed by that program indicates that the diskette is a
master. Then, save* the edited greetings program on
the slave diskette.

Step 3: If you plan on changing the name of the greetings
program (see the prompt on the display in Step 5) , use*
RENAME at this point to change the program's name.

Step 4: Remove the slave diskette and replace it with the System
Master.

Step 5: Boot DOS from the System Master and enter the fol low­
ing command from either Applesoft or Integer:

BRUN MASTER CREA TE

The following screen display will then appear:

DOS 3.3 MASTER-CREATE UTILITY

COPYRIGHT 1980 BY APPLE COMPUTER INC.
ALL RIGHTS RESERVED

(NOW LOADING DOS IMAGE)

PLEASE INPUT THE GREETING PROGRAM'S
FILE NAME:

Step 6: Enter the program name used for the greetings program
on the slave diskette (generally HELLO) and press the
return key. The following screen will then appear:

*The procedure for saving programs and renaming files will be
discussed later in this chapter.

Cassette and Disk Storage with the Apple lie 201

REMEMBER THAT MASTER DOES NOT CREATE
THE GREETINGS PROGRAM, OR PLACE IT IN THE
DISK DIRECTORY

THIS IS THE FILE NAME THAT WILL BE PLACED
WITHIN THE IMAGE:

HELLO
PLACE THE DISKETTE TO BE MASTERED IN THE

DISK DRIVE.
PRESS RETURN WHEN READY.

NOTE : IF YOU WANT A DIFFERENT FILE NAME,
PRESS ESC .

Step 7: Remove your System Master from the drive and
replace it with the slave diskette being converted to a
master. Press the return key to begin the conversion .
The following message will be displayed when the con­
version has been completed:

THE DISKETTE HAS BEEN UPDATED, YOU MAY
REMOVE IT AT THIS TIME.

IF YOU WISH TO " MASTER" ANOTHER DISK­
ETTE, PRESS (RETURN)

OTHERWISE PRESS ESC TO EXIT "MASTER"

Step 8: After you have finished using MASTER CREA TE, reboot
DOS before entering any further commands.

The greetings program filename (specified in Step 5) is not
actually placed in the diskette's catalog. This prompt merely
identifies the program that DOS should run when the diskette is
booted.

The newly created master diskette must contain a program with
the filename specified in Step 5. If this is not the case, the
following message will be displayed when you boot the diskette:

, 202 Apple lie Users Handbook

FILE NOT FOUND

If you are changing the name of your greetings program, be sure
to rename the program's filename as described in Step 3.

LOAD

LOAD is used in DOS to load a program file from diskette into
memory.

Configuration

LOAD filename [Sx, Vx, Dx]

The following example would load the program file named
JiROGA from diskette into memory:

LOAD PROGA

If the specified filename cannot be located in the diskette
directory, the following message will be displayed :

FILE NOT FOUND

If the file is located on the directory, DOS will check to be sure
that the file is a program file. If the specified file is not a program
file, the following message will be displayed :

FILE TYPE MISMATCH

If the specified file is located in the directory and it is a program
file, the current program in RAM will be erased and the specified
program file will be copied from the diskette file into RAM. That
program can then be edited, renamed, listed, or run .

SAVE

The SAVE command is used in DOS to save a program from RAM
onto diskette.

Cassette and Disk Storage with the Apple lie 203

Configuration

SAVE filename [Sx, Vx, Dx]

When SAVE is executed, the specified drive will begin spinning
and the in use lamp will light. This indicates that the program in
RAM is being saved on diskette. When the drive stops spinning
and the in-use light goes off, the prompt will reappear. The
program will have been saved on diskette.

If a filename is specified with SAVE that is identical to a filename
already on diskette, the file being saved will replace the file on
diskette. The original file will be erased.

DELETE

The DELETE command can be used to remove a file from a
diskette.

Configuration

DELETE filename [, Sx, Vx, Dx]

RENAME

The RENAME command can be used to change the name of a
diskette file.

Configuration

RENAME oldfilename, newfilename

The file specified by oldname will be renamed as specified in
newname. If newfilename specifies a filename already on
diskette, DOS will still change the filename as indicated by
RENAME. As a result, two files could be located on the same
diskette with the same filename. To prevent confusion, avoid
using the same filename for files located on the same diskette.

If a file is locked, it cannot be renamed. Exercise caution when

204 Apple lie Users Handbook

renaming the greetings program. If the greetings program is
renamed , a new program should be saved on the diskette with
the same filename as the original greetings program as DOS will
continue to search for the greetings program under its original
filename.

LOCK

Locking is a feature which prevents a file from being inadvertently
deleted or overwritten.

Configuration

LOCK filename [, Sx, Vx, Dx]

Locked files are indicated on the catalog listing with an asterisk .
Any attempt to DELETE or RENAME a file will result in the
following error message :

FILE LOCKED

Also, if an attempt is made to SAVE a file with a filename identical
to that of a locked file, the following message will appear (if both
files are in the same language) .

FILE LOCKED

If an attempt is made to SAVE a file using the name of a filename
of a locked file in a different language, the following message
will appear:

FILE TYPE MISMATCH

VERIFY

Sometimes~ information may not be recorded correctly on the
diskette. The VERIFY command can be used to confirm that a file
was correctly copied .

Cassette and Disk Storage with the Apple lie 205

Configuration

VERIFY filename[, Sx, Vx, Dx]

VERIFY uses the checksum value for each sector to determine
whether or not that sector was copied correctly. The checksum
value is calculated using the numeric value of each character in
the sector, and is stored in the sector.

VERIFY recomputes the checksum for each sector in the file and
then compares these computed checksums with those stored in
the sector. If there are any discrepancies, the following error
message will appear:

110 ERROR

If the computed and stored check sums agree, the BASIC prompt
will be displayed.

MON&NOMON

MON is an abbreviation for MONITOR. The MON command is
used to display information related to disk input and output. The
NOMON command will turn the display off again.

MON is useful when debugging a program. Generally, data
transferred between the screen and disk drives is not displayed.
MON allows this data to be displayed, which can be helpful
during the debugging process.

Configuration

MON [C] [, I] [, 0]

NOMON [C] [, I] [, 0]

C indicates that commands to the disk are to be monitored. (ex.
OPEN, READ, WRITE, etc) .

206 Apple lie Users Handbook

I indicates that input from the disk is to be monitored (ex. when a
f i le is being read) .

0 indicates that output to the disk is to be monitored (ex. when a
file is to be written to) .

C, I, and 0 can be specified in any order and must be delimited
with commas. At least one of these three parameters must be
included with either MON or NOMON for the command to
have an effect. A MON remains in effect until either a NOMON,
INT, FP, or DOS reboot are undertaken.

The default is NOMON C, I, 0 . This command indicates that no
monitoring is to occur.

The different combinations of C, I, and 0 with MON are
summarized in Table 5-2.

Table 5-2. MON Command Summary

MON Command Input and/ or Output Monitored

MONC, 1, 0 Disk input. Disk output. Commands to disk .

MONC, I Disk input. Commands to disk.
I

MONC, O Disk output. Commands to disk.

MONl, O Disk input. Disk output.

MONO Disk output.

MONI Disk input.

MONC Commands to disk.

Cassette and Disk Storage with the ,Apple lie 207

MAXFILES

MAXFILES allows the users to specify the number of files which
can be open at any one time. A maximum of 16 files can be open
at any one time.

Configuration

MAXFILES x

x is an integer from 1 to 16. The default value for x is 3.

Each file specified by MAXFILES has 595 bytes of memory
reserved as a buffer. One 256-byte section of the buffer is used
for reading and a second 256-byte is used for writing. The
remaining 83 bytes are used for housekeeping information.

One file buffer is required for the execution of each of the
following DOS commands:

APPEND EXEC OPEN
BLOAD FP POSITION
BRUN INIT READ
BSA VE INT RENAME
CATALOG LOAD RUN
CHAIN LOCK SAVE
CLOSE MON VERIFY
DELETE NOMON WRITE

If the number of open disk files is at the limit set by MAXFILES
and one of the aforementioned DOS commands is executed, the
following error message will appear:

NO BUFFERS AVAILABLE

MAXFILES should be executed prior to loading a program as its
execution in the immediate mode causes the erasure of Integer
BASIC programs as well as difficulties with strings in Applesoft.

208 Apple lie Users Handbook

If MAXFILES is executed within a program, memory pointers will
be altered. This can cause problems with GOSUB, GOTO, and
other instructions. If you need to execute a MAXFILES command
within an Integer BASIC program, do so using an EXEC file
(discussed later) .

If you need to execute a MAXFILES command in an Applesoft
BASIC program, the command should be the first statement in
the program and should be preceded with a Control-D character
as illustrated below :

100 PRINT CHR$(4) ; " MAXFILES 6"

EXEC

The EXEC command allows for the execution of an EXEC file.

Configuration

EXEC filename, [Rx, Sx, Vx, Dx]

R indicates the relative field number within the EXEC file where
execution is to begin . RO is the default value which causes
execution to commence at the beginning of the EXEC file . If R1
was specified, execution would begin with the file 's second
record.

When the EXEC command is executed, the indicated EXEC file is
first opened . Then, the line specified by the R parameter is read
and executed as if it had been entered via the keyboard in the
immediate mode.

If the line is a valid program line, it will be stored in memory--just
as if it had been entered in the immediate mode. If the line is a
command such as LIST, CATALOG, SAVE, or RUN, it will be
executed.

Cassette and Disk Storage with the Apple lie 209

A sample EXEC file is listed below:

100 x = 0
200 FOR X = 1 TO 3
300 PRINT X
400 NEXT
500 END
RUN
NEW
CATALOG

Once this EXEC file has been created (as explained in the next
section) with the filename SAMPLE, it can be executed by issuing
the following :

EXEC SAMPLE

When this EXEC command is executed, the following w ill occur :

• A simple program will be entered into memory, and
executed.

• The diskette's directory will be listed by CATALOG.

Creating an EXEC File

First of all, a program must be written to create an EXEC file. An
example of such a program is given below:

10 REM CREATE EXEC
20 D$ = CHR$(4) :REM CTRL-D
30 PRINT D$; " OPEN SAMPLE"
40 PRINT D$; "WRITE SAMPLE"
45 PRINT "FP"
60 PRINT "100 X = O"
70 PRINT " 200 FOR X = 1 TO 3"
80 PRINT "300 PRINT X"
90 PRINT "400 NEXT"

100 PRINT " 500 END"
110 PRINT " RUN"
120 PRINT " NEW"
130 PRINT " CATALOG"
140 PRINT D$; "CLOSE SAMPLE"

210 Apple lie Users Handbook

This program (named CREA TE EXEC) will create an EXEC file
named SAMPLE. Note on line 130 that the DOS command
CATALOG need not be preceded by CTRL-D. This is the case
with other DOS commands as well.

Once CREATE EXEC has been saved on diskette, the following
command:

RUN CREATE EXEC

will result in the creation of an EXEC file named SAMPLE. This file
can then be executed with the following command :

EXEC SAMPLE

BSA VE

DOS allows the usage of binary files as well as BASIC program
files. Binary files are denoted with the letter Bin catalog listings.
BSA VE is used to save a binary file on disk.

Configuration

BSAVE filename, Axxx, Lxx, [Sx, Vx, Dx]

A indicates the beginning address in memory of the data to be
stored on diskette. If A is specified in hexadecimal notation, it
should be preceded with the dollar sign ($). The address
specified with A (xxx) should correspond to an actual memory
address in the lie.

L indicates the length in bytes of the portion to be saved. The
maximum number of bytes that can be saved is 32767.

BLOAD

BLOAD loads the contents of a binary file back into memory.

Cassette and Disk Storage with the Apple lie 211

Configuration

BLOAD filename [, Axxx] , Lxxx, [Sx, Vx, Dx]

The address parameter (A) is optional in BLOAD. If A is not
specified, the file will be loaded at the address indicated when
the file was saved.

BRUN

BRUN performs a BLOAD, after which it performs a machine
language JMP instruction to the address indicated by A. This will
begin execution of the machine language program.

Configuration

BRUN filename [, Axxx] , Lxxx, [Sx, Vx, Dx J

Using DOS Commands in Programs

In certain situations, you may wish to use DOS commands within
BASIC programs. A DOS command can be included within a
BASIC program by placing the command within a PRINT
statement and prefixing the command with the Control-D
character (ASCII Code 4) .

An example of the usage of a DOS command within an Applesoft
program is given below:

10 D$ = CHR$ (4)
20 PRINT D$; " CATALOG"

The preceding program will generate a catalog listing.

Note that we defined D$ as Ctrl-D using the CHR$ function .
Since actually entering Ctrl-D via the keyboard does not
generate a printing character, this is the preferred method for
including Ctrl-D in a BASIC statement.

212 Apple lie Users Handbook

SEQUENTIAL & RANDOM FILE ACCESS

Diskettes can be used to store information other than a program.
For example, a diskette file can be used to star names and
addresses on a mailing list, the result of a formula, a letter, or any
other form of data. Such a file is known as a text file (or data file).
Text files are denoted in the catalog listing with the letter T.

Text files are created, read from, or written to using the following
DOS commands in an Applesoft or Integer BASIC program.

OPEN APPEND
CLOSE POSITION
READ EXEC
WRITE

OPEN, READ, WRITE, APPEND, and POSITION can only be used
in the program mode. If an attempt is made to use these
commands in the immediate mode, the following error message
will appear :

NOT DIRECT COMMAND

CLOSE and EXEC may be used in the immediate mode.

Two types of text files are used, sequential text files and random
text files.

Each record of a sequential disk file is assigned exactly as much
disk space as it requires. There are no blank spaces between
records in a sequential file .

In random data files, a constant space is assigned to every record
in the file. If the record does not occupy the entire space
assigned to it, the remaining space is left blank.

The concepts of sequential and random files are pictured in
Illustration 5-15. Notice that the length of each record in the
random file is constant at 100 bytes.

The record length of a sequential file is variable. The record
length is the sum of the total space used by all the fields in each
individual record .

Cassette and Disk Storage with the Apple lie 213

Illustration 5-15. Random and Sequential Data Files

Random File

SECTOR 1 SECTOR 2 SECTOR 3

i I I I
l
I
I

t ' I ' I
Record 1 Record 2 Record 3
200 Bytes 200 Bytes 200 Bytes

Sequential Files

SECTOR 1 SECTOR 2 SECTOR 3

~!I 11 ! I ! I
t \ I t \ I

Record 1 Record 2 Record 3 Record 4
200 Bytes 80 Bytes 190 Bytes 200 Bytes

*Example assumes 256 bytes per sector.

214 Apple lie Users Handbook

Another difference between random and sequential files is the
way in which each file is accessed. Direct Access of any record in
a random file is possible regardless of that record's location
within the file.

By direct access, we mean that any record in the file may be
retrieved regardless of its position, without having to search
through the entire file to find it.

Records in a sequential file can only be retrieved by sequential
access. In sequential access, the record search begins with the
first record in the file and must continue until the desired record
is found.

Opening Sequential Files

A diskette file must be opened before it can be accessed by a
program. When a file is opened, DOS will check to see if the
specified file is on disk, and if so, where it is located. OPEN also
reserves a 595-byte buffer for input and output to the file.

Configuration

OPEN filename [, Sx, Vx, Dx]

If the specified filename is not present on the diskette, DOS will
create an entry for that filename in the diskette's directory.

OPEN must be specified within quotes in a PRINT statement.
OPEN must be preceded with Ctrl-D. In the following statements,
a filename TEXT A is created on the default drive:

100 D$ = CHR$(4)
200 PRINT D$; "OPEN TEXTA"
300 END

Writing to Sequential Files

Information is sent to the diskette via the PRINT statement just as
data is sent to the display or printer. However, before data can be

Cassette and Disk Storage with the Apple lie 215

sent to a diskette file with PRINT, the DOS WRITE command
must be executed . WRITE notifies DOS that the PRINT statement
is being used to send data to a diskette file rather than to the
display.

Configuration

WRITE filename

After the WRITE command has been executed, subsequent
PRINT statement output will be sent to the specified diskette file.

If an error is encountE7red, the error message will be sent to the
diskette file. However~ once an error message has been sent to
the diskette file, the WRITE command will be cancelled .

As shown in the following example, WRITE must be issued with a
PRINT statement and preceded with Ctrl-D.

100 D$ = CHR$(4)
200 PRINT D$; " WRITE TEXTA"
300 PRINT " THIS DATA IS BEING SENT TO THE DISKETTE"

When data is printed to a file, DOS will update an internal file
pointer. This pointer denotes the position on the diskette

·· surface where the next data items will be stored. The file pointer
for a sequential data file can only be moved forward . The OPEN
statement moves the file pointer to the beginn ing of the file .

When you are writing to a sequential data file with existing data,
problems can occur unless the file is first erased . Th is is due to
the fact that although PRINT statements will overwrite the
existing file contents, the previous data may extend beyond the
end of the new data.

This potential problem can be avoided by using the DELETE
command prior to the OPEN command as shown in the following
example :

216 Apple lie Users Handbook

100 D$ = CHR$(4)
110 PRINT D$; " OPEN TEXT A"
120 PRINT D$; " DELETE TEXT A"
130 PRINT D$; " OPEN TEXTA"
140 PRINT D$; " WRITE TEXT A"
150 PRINT " THIS IS THE NEW DATA"
160 PRINT D$; " CLOSE"
170 END

The DELETE command in line 120 will erase the previous contents
of TEXT A. Notice the OPEN command in line110. This command
is issued to prevent a possible error in line 120. If the DELETE
command was issued in line 120, and TEXT A was not present on
the diskette, the following error message would be displayed:

FILE NOT FOUND

The OPEN command in line 110 will create TEXT A in case it did
not already exist on the diskette.

The WRITE command must be cancelled should the user wish to
resume sending output to the screen or printer rather than to the
disk drive. Any DOS command will cancel WRITE. The safest
method of cancelling WRITE is to issue the null command. The
null command consists of the Ctrl-D character. The following
program line would cancel WRITE:

165 PRINT D$

assuming D$ had been assigned the ASCII code for Ctrl-D.

Reading Sequential Files

DOS allows the user to read data from the text file as well as to
write data to it. The READ command specifies a disk file as the
source for data input via the INPUT and GET (Applesoft only)
statements.

Configuration

READ filename

Cassette and Disk Storage with the Apple lie 217

The READ statement must be issued in a PRINT statement and
must be preceded with the Ctrl-D character. Once a READ
command has been issued, INPUT statements will accept data
from the file specified in filename until a subsequent DOS
command or an error cancels READ.

The following illustrates the use of READ:

100 D$ = CHR$(4)
110 PRINT D$; " OPEN TEXTA"
120 PRINT D$; " READ TEXT A"
130 INPUT X$
140 PRINT X$
150 PRINT D$; " CLOSE TEXT A"
160 END
]RUN
THIS IS THE NEW DATA

l

In Applesoft, the GET statement can also be used to read data
from a disk file . Unl ike INPUT, GET returns just one character.
Therefore, if our text file included the following phrase :

THIS IS THE NEW DATA

after an OPEN and READ were executed, the first GET statement
would return the letter T, the second GET statement would
return the letter H, etc.

The following program illustrates the use of GET to read data
from a text file :

100 D$ = CHR$ (4)
110 PRINT D$; " OPEN TEXT A"
120 PRINT D$; " READ TEXT A"
130 X$ = " "
140 GET Y$
150 IF Y$ = CHR$ (13) THEN 180
160 X$ = X$ + Y$
170 GOTO 140

218 Apple lie Users Handbook

180 REM RETURN CHARACTER ENCOUNTERED
I

190 PRINT CHR$(1) ; X$
200 END

Notice the inclusion of the CHR$(1) prior to X$ in line 190. This
character is included in the PRINT statement because GET
ignores the first character that is printed following its execution.
If this character is Ctrl-D, the DOS command that follows will be
printed rather than executed as a DOS command. The CHR$(1)
in the PRINT statement in line 190 can be ignored as it has no
special meaning. This allows the program to function properly.

Closing a Sequential File

Once a file has been opened, it should be closed. Failing to close
a file can result in the loss of data in the file left open as well as
possible loss of data on another diskette.

Configuration

CLOSE [filename]

When CLOSE is used without a filename parameter, all open files
on all diskettes will be closed. If filename is specifi'ed with
CLOSE, the specified file will be closed.

APPEND

The DOS APPEND command allows the user to place the file
pointer for a sequential file at the end o·f the last data item. Since
the file pointer is reset after a file has been closed and re­
opened, APPEND is a useful command--especially in situations
where the user wishes to add text to the end of a sequential file.

Configuration

APPEND filename [, Sx, Vx, Dx]

The APPEND command will place the fileJ>0inter to the first
character position beyond the end of the fil \ If data is written to

Cassette and Disk Storage with the Apple lie 219

the file after an APPEND has been executed, that data will be
written immediately after existing file data. If an attempt is made
to read data from the file after an APPEND has been executed,
the following error message will be displayed:

END OF DATA

APPEND performs an OPEN on the specified file if that file
already exists. If the specified file does not exist, the following
error message will be displayed :

FILE NOT FOUND

In other words, unlike OPEN, APPEND will not create a file .

POSITION

POSITION can be used to move the file pointer to any given field
in the sequential file.

Configuration

POSITION filename [, Rxx]

filename specifies the file whose file pointer is to be moved. R
indicates the relative field position, and xx indicates the number
of fields to be moved forward. (POSITION can only be used to
move the file pointer forward) .

If xx= 0, then any READ or WRITE operation will be undertaken
in the current field. If xx= 1, the current field will be skipped
over, and any READ or WRITE operations will be undertaken in
the next field. If xx= 2, the current field and the following field
will be skipped, before any READ or WRITE operation will occur.

A file must have been OPEN'ed before POSITION can be
executed. Since OPEN sets the file pointer to the beginning of
the file, if POSITION is executed immediately after OPEN, the
Rxx parameter will select the absolute field position w ithin the
file. In other words, the relative file position (selected by R) will

220 Apple lie Users Handbook

correspond to the absolute file position. This only occurs when
the file pointer is positioned at the beginning of the file.

POSITION like all DOS commands will cancel a READ or WRITE
command. For this reason, execute POSITION prior to the
execution of READ or WRITE.

POSITION functions by examining the file byte by byte. When
POSITION encounters the ASCII code for return, it assumes that
the current f ield 's ending point has been reached . If POSITION
encounters an unused byte, it will assume that the field requested
does not exist. The following error message will be displayed :

END OF DATA

The following program illustrates the use of POSITION :

100 0$ = CHR$ (4)
110 A$= " JOHN" : 8$ = " BILL": C$ = " JACK"
120 PRINT D$; " OPEN TESTS"
130 PRINT D$; " WRITE TESTS"
140 PRINT A$: PRINT 8$: PRINT C$
150 PRINT 0$; " CLOSE TESTS"
160 PRINT D$; " OPEN TESTS"
170 PRINT D$; " POSITION TESTS, R2"
180 PRINT D$; " READ TESTS"
190 INPUT Z$
200 PRINTZ$
210 PRINT D$; " CLOSE TESTS"
220 END
)RUN [Ret)
JACK

Cassette and Disk Storage with the Apple lie 221

Storing Data in Disk Files

Caution must be exercised when storing numeric values in disk
files. For example, if the following program was executed in
Applesoft BASIC:

050 A= 0: B = 0
100 D$ = CHR$(4)
110 PRINT D$; "OPEN TEST C"
120 PRINT D$; "WRITE TEST C"
130 PRINT 1,2,3,CR,4,5
140 PRINT D$; "CLOSE TEST C"
150 PRINT D$; "OPEN TEST C"
160 PRINT D$; "READ TEST C"
170 INPUT A
180 PRINT A
190 INPUT B
200 PRINT B
202 INPUT C
204 PRINT C
210 PRINT D$; "CLOSE TEST C"
220 END
RUN

The following display would appear :

123)
Notice from lines 170 and 180 that the first three of the PRINT
statement parameters (in line 130) were concatenated to form a
single number (123). The next output line consisted of the fourth
PRINT statement (4). The final output line consisted of the fifth
PRINT statement parameter.

222 Apple lie Users Handbook

This situation arises because of the format in which information
is stored on disk files . When a PRINT statement is directed to the
display, if commas are used to delimit parameters, each
parameter is displayed at the next tab position on the screen.

However, when PRINT statement output is sent to a disk file, the
commas are ignored. Therefore, all parameters are concatenated
until the carriage return character (ASCII 13) is encountered. In
DOS, the carriage return character is the only character which
can be .used to separate values.

In Integer BASIC, a carriage return character is output after the
fifth tab stop. In Applesoft BASIC, a carriage return character is
output after the third tab stop. In our Applesoft program
example, a carriage return was inserted as indicated. This caused
the PRINT statement output in line 130 to be concatenated as
two separate numeric values.

Whenever you wish to output a number of items via the PRINT
statement to different fields in the disk file, either separate
PRINT statements should be used or each PRINT statement
parameter should be delimited with the return code character.
This is illustrated in the following program lines:

130 PRINT 1 :PRINT 2:PRINT 3:PRINT 4:PRINT 5

or

100 D$ = CHR$ (4):E$ = CHR$ (13) :REM CTRL-D
IS ASCII 4; RETURN IS ASCII 13

130 PRINT 1; E$; 2; E$; 3; E$; 4; E$; 5

If you substitute these lines in the example, the following output
will appear :

(_~ __)

Cassette and Disk Storage with the Apple lie 223

Opening and Closing A Random Access File

The following configuration is used to open a random access f i le :

Configuration

OPEN filename, Lxx [, Sx, Vx, Dx]

L is known as the length parameter. L is a required parameter
which denotes the length of each random access record . L can
range from 1 io 32767.

The CLOSE statement is used to close a random access file just as
it is used to close a sequential file.

Reading and Writing to Random Files

The following configuration is used to read from or write to a
random access file.

Configuration

READ filename, Rxx [, Sx, Vx, Dx]

WRITE filename, Rxx [, Sx, Yx, Dx]

R is known as the record parameter. R moves the file pointer to
the beginning of the specified record .

The follow_ing program illustrates reading from and writing to a
random file.

10 D$ = CHR$ (4)
20 PRINT D$; " OPEN RANDOM, L20"
30 PRINT D$: "WRITE RANDOM,R2"
40 PRINT "RECORD NUMBER TWO"
50 PRINT D$; " WRITE RANDOM, R3"
60 PRINT "THIS IS RECORD 3"
70 PRINT D$; " WRITE RANDOM, R1 "
80 PRINT " RECORD 1t
90 PRINTD$; " WRITE RANDOM, R4"

100 PRINT ''RECORD 4"
110 PRINT D$; " CLOSE RANDOM"
120 GOTO 180
130 PRINT D$; " OPEN RANDOM, L20"
140 PRINT D$; " READ RANDOM, R"; R

224 Apple lie Users Handbook

150 INPUT X$
160 PRINT D$; "CLOSE RANDOM"
170 RETURN
180 INPUT " ENTER RECORD NUMBER "; R
190 GOSUB 130
200 PRINT X$
210 GOTO 180

Byte Parameter

The B or byte parameter can be used with the READ, WRITE, and
POSITION statements to move the file pointer to a specified byte
with in a sequential file or a specified byte within a specified field
in a random file .

For example, the following command:

WRITE TEXT A, B20

would set the file pointer to the twenty-first byte in the
sequent ial file named TEXT A. The first byte is byte 0. Any
characters output to the disk file by subsequent PRINT statements
will replace existing characters in TEXT A beginning with byte 21 .

If R is specified , the B parameter sets the file pointer to the
specified byte in the record indicated by R. In the following
example:

READ TEXT A, R20, B4

the read operation will begin at the fifth byte in the twenty-first
record .

When using the byte parameter, the user must know exactly
what data has been stored in the file . Remember that spaces,
commas, return codes, and all characters are stored in byte
positions with in a field .

CHAPTER 6.
APPLE lie GRAPHICS

The Apple lie has three different display modes - one text
mode and two graphics modes. These formats may be combined
into five different display formats. Both of the graphics modes
are color capable. These two modes will be discussed in this
chapter.

The Apple lie can generate some of the finest color graphics
available on a medium priced computer system ($1000-$2000) .
This is quite amazing, in light of the fact that the Apple was one
of the first color capable home computers.

LOW RESOLUTION GRAPHICS

The low resolution graphics mode is used in two of the pre­
viously mentioned display formats . A graph ics-only display is
available that has a resolution of 40 x 48 pixels.* Also a graphics
plus text display is available that has a resolution of 40 x 40 pixels.
In this mode, four lines of text are located beneath the graphics
display.

Commands

The GR command is used to call the low resolution graphics
mode. This command configures the computer hardware to
display the graphics plus text format . This command also clears
the display memory so that the screen will initially be black. The
GR command can be used in a program or executed directly
from the keyboard, as can all graphics commands.

*A pixel can be defined as a single screen coordinate.

226 Apple lie Users Handbook

GR set low resolution
graphics & text

Besides clearing the screen, the GR command also sets the low
resolution "next color" register to 0. This register stores the
numeric value of the next color to be displayed.

The four lines of text that appear beneath the graphics mode can
be replaced with 8 more rows of the graphics mode. This extends
the display resolution to 48 x 40 pixels. This switch can be
accomplished by reading or writing to memory location 49234.
The easiest means of accomplishing this is by poking the
location.

POKE 49234,0 full screen graphics

To replace the four lines of text without erasing any graphics
information on the screen, read or write to memory location
49235. Again , this can be accomplished by poking the location.

POKE 49235,0 graphics & text
(no erase)

Before any graphics information can be plotted on the screen, a
color must be selected. This is accomplished through use of the
COLOR command. The correct syntax of this command is as
follows :

COLOR =x

x represents a number between 0 and 255. The color correspond­
ing to x modulo 16 is selected. For example, if x = 2 or 18 then
color number two is selected. The colors and their associated
numbers are listed in Table 6-1.

Apple lie Graphics 227

Table 6-1 Color Numbers.

0- black 8- brown
1- magenta 9- orange
2- dark blue 10- grey
3- purple 11 - pink
4- dark green 12- green
5- grey 13- yellow
6- medium blue 14- aqua
7- light blue 15- white

After a COLOR has been selected , information can be plotted
to the screen. This is accomplished by using the PLOT command.
The correct syntax of this command is as follows :

PLOT x,y

x is the column number. y is the row number. The column
numbers extend from 0 (left) to 39 (right) . The row numbers
extend from 0 (top) to 47 (bottom). For example the following
program plots two orange squares in the upper righthand corner
of the screen.

10 GR - set low resolution mode

20 COLOR =9 - select ORANGE = 9

30 PLOT 39,1 - plot first square

40 PLOT 38,0 - plot second square

If a graphics & text format is being displayed, plotting to a row
number between 40 and 47 will cause a character to be displayed
at that location.

VLIN and HLIN can be used to plot consecutive pixels. VLIN and
HLIN are abbreviations for Vertical LINe and Horizontal LINe
respectively. The correct syntax for the VLIN command is as
follows :

VLIN y,,y2 AT x

228 Apple lie Users Handbook

y1 and y2 represent the range of row numbers. x represents the
column number. The following VLIN command will plot every
pixel in column 30 from row 4 to row 24.

VLIN 4, 24 AT 30

The correct syntax for an HLIN command is as follows :

x1 and x2 represent the range of column numbers. y represents
the row number. The following HLIN command will plot every
pixel in row 14 from column 2 to column 37.

HLIN 2, 37AT14

After information has been output to the screen, it may become
necessary to determine which color is displayed at a certain
screen position. The function SCRN takes as its arguments the
row and column numbers, and returns the color number. The
correct syntax of the SCRN command is as follows :

X=SCRN (x,y)

x represents the column number. y represents the row number.
Upon execution of the preceding command, X will be assigned
the value of the color at screen location column =x, row =y.

Uses of Low Resolution Graphics

The use of low resolution graphics is usually limited to drawings
and simple charts. This is because low resolution graphics is not
well-supported in BASIC.

Charts

Simple bar charts are easily implemented by using low resolution
graphics. The text window may be used for documentation or
labels. For example, the following program displays a monthly
sales chart.

10 DIM A(12)
20 FOR I = 1 TO 12
30 A(I) = 30 * RND(1)
40 NEXT I
50 GR:HOME

Apple lie Graphics 229

60 PRINT "MONTH: 1 FM AM J J AS 0 ND"
70 FOR I= 1TO12
80 COLOR= I
90 VLIN A(l),39 AT 5 + 2 * 1

100 NEXT I

Lines 10-40 initialize the array A with random values. Line 50
clears the entire screen. Line 60 prints the headings on the
column. Lines 70-100 plot the bar charts.

Writing a Game Program
In this section, the game, "BARACADE" will be designed. The
object of the game is to avoid the baracades as well as your own
trail. The game will be written in BASIC so that it may be easily
modified .

If the reader does not wish to follow the step-by-step designing
of BARACADE, he may page through the chapter. All program
lines may easily be distinguished from the rest of the text. To play
BARACADE, merely enter every line belonging to the program.

The first step in designing "BARACADE" is to program the com­
puter to draw a trail. The following statements accomplish this.

10 GR: HOME
140 Y = 20 : X = 20 : A = 65
150 COLOR =4
155 GET A$
160 IF PEEK(-16384) > 127THEN GET A$: A =ASC(A$)
170 IFA=8THENX=X-1
180 IF A= 21 THEN X = X+1
190 IFA=65THENY=Y-1
200 IF A= 90 THEN Y = Y+1
220 PLOT X,Y
250 GOTO 160

230 Apple lie Users Handbook

Line 10 clears the screen and enables low resolution graphics.
Line 140 sets the initial position at screen location (20,20). This is
the center of the screen. The A =65 statement that also appears in
line 140 selects " up" as the initial direction of movement.

(A)
65

90
(Z)

These values represent the ASCII coded values for the controller
keys: A, Z, - and -.

Lines 160-250 set up a loop that monitors the keyboard and acts
accordingly. Line 160 checks for a keypress and sets the direction
variable, A. The expression PEEK (-16384) > 127 is true whenever
a key has been pressed. Lines 170-200 recalculate the postion
variables. Executing the program is the best way to understand
how it operates. By the way, the program will not operate cor­
rectly if an 80-column card is presently active. See Chapter 8 for
instructions about how to deactivate the card.

Recall from our description of BARACADE, that one of the rules
was that the player was not allowed to collide with his trail. The
SCRN function will be used to check for collision . If the follow­
ing line is added to the program, collisions will be detected.

210 IF SCRN (X,Y) > 0 THEN 260

The program has not yet been completed . When it is run, an
error occurs after every collision. This is because the computer
does not know where to jump when there is a collision. Let's tell

Apple lie Graphics 231

it, by adding the following lines to the program.

260 PRINT "COLLISION"
270 FOR J = 1 TO 12
280 PRINT CHR$(7);:NEXT J
290 INPUT A$
300 GOTO 10

The PRINT statement in line 280 activates the consol speaker.
Line 290 delay's a new game from starting until return has been
pressed.

A BARACADE's score can be easily kept track of by merely incre­
menting a variable each time a move has been completed .

130 I= 0
230 I= I+ 1
240 HOME: PRINT I

A final technicality remains - creation of a playing field. A
square field with scattered barriers was chosen.

20 COLOR =9
30 VLIN 0,39 AT 0
40 VLIN 0,39 AT 39
50 HLIN 0,39 AT 0
60 HLIN 0,39 AT 39

Line 20 sets the playfield color to orange (9). Lines 30-60 draw a
square border around the field.

70 FORK= 1TO6
80 GOSUB 310
90 HLINL,L+SATM

100 GOSUB 310
110 VLIN L,L + 5 ATM
120 NEXT K

The previous addition to the program draws randomly located
barriers around the playfield. The subroutine at 310 must pro-

232 Apple lie Users Handbook

vi de random values for the variables Land M , which have a range
from 0 to 34 inclusive.

310 L = 34*RND(1)
320 M = 34*RND(1)
330 RETURN

The ideas in this section by no means exhaust the possibilities
that could be added to "BARACADE." Other upgrades might
include : keeping track of the high score, or adding another
player. The only two limiting factors are execution speed and
one's imagination.

HIGH RESOLUTION GRAPHICS

The Apple can also be configured to display one of two high
resolution graphics formats. A graphics-only display is available
that has a resolution of 280x192 pixels. Also, a graphics plus text
display is available that has a resolution of 280x160 pixels. In this
mode, four lines of text are located beneath the graphics display.

Commands

All high resolution graphics commands directly parallel their low
resolution counterparts. Therefore, familiarity with the low
resolution commands will be assumed throughout the remainder
of this chapter.

The HGR command can be used to configure the computer to
display the graphics plus text format. The command clears the
display memory (2000-4000 Hex), so that the screen will initially
be black.

HGR set high-resolution
graphics+ text

The HGR command does not clear the high resolution " next
color" register.

The four lines of text that appear beneath the graphics mode can

Apple lie Graphics 233

be replaced with 32 more rows of the graphics mode to increase
the display resolution to 280x192 pixels. This is accomplished in
the same manner as was a similar switch using low resolution
graphics.

POKE 49234,0
POKE 49235,0

full screen graphics
graphics+ text
(no erase)

A second high resolution command is:

HGR2 set high resolution graphics only.

This command clears then displays high resolution page 2. Page 2
is located at memory addresses 4000-6000 Hex. Use of this com­
mand has one advantage over HGR - more memory space is
available for program use. HGR2 has the disadvantage that it
does not easily support a graphics plus text display. As a side note
- if the command GR is issued while HGR2 is in effect, low
resolution page 2 will be displayed. BASIC does not support this
display mode. Enter TEXT to recover from this error.

An HCOLOR command must be used before any graphics may
be output to the high resolution display. This command selects
the color that will be displayed next. The correct syntax of this
command is as follows:

HCOLOR =x

x represents a number between 0 and 7. Each number corres­
ponds to a specific color. This information is contained in Table
6-2.

0- black
1- green
2- purple
3- white

Table 6-2.

4- black
5- orange
6- blue
7- white

234 Apple lie Users Handbook

High resolution graphics has a single command that can be used
to output data to the screen. HPLOT is more flexible than PLOT,
HLIN, and VLIN combined. In HPLOT's simplest form, it func­
tions as low resolution 's PLOT command.

HPLOT x,y

x is the column number. y is the row number. The column
numbers extended from 0 to 279. The row numbers extend from
0 to 191 . The computer stores the column number and row
number of the last plotted coordinate.

The next form of the command is as follows:

HPLOT TO x,y

The computer executes this command by drawing a straight line
from the last plotted point to the point with coordinates (x,y).
The line color will be the last color selected by the HCOLOR
command. These two versions of the HPLOT command may be
combined as follows:

This command will cause a line to be drawn from screen coordi­
nate (x 1,y1) to screen coordinate (x 2,y2) . x2 and y2 will be stored
as the last plotted coordinate.

The reserved word TO may appear more than once in a single
HPLOT command. '

HPLOT 1,1 TO 20,100 TO 200,30

The previous command will initially cause a line to be drawn
from 1,1) to (20,100). A second line will then be drawn from
(20,1(1J) to (200,30). Finally, the value 200 will be stored as the
column number, and the value 30 will be stored as the row
1umber.

Apple lie Graphics 235

Shape Table

BASIC has five commands that allow the manipulation of shapes.
These commands are:

SCALE
ROT
DRAW
XDRAW
SH LOAD.

Before these commands may be used, a shape table must be
defined. The first step in the definition of the table is to draw the
shape on paper. Graph paper works best.

: :~~.~ ..

'

Suppose a square is to be defined. Draw the square on graph
paper. Now, starting at the center of the figure , connect all
points in the shape with a continuous line. Use only 90° angles
on the turns. Next, add arrows on the lines to indicate the
direction that was used to connect the points. Numbering is a
good practice here.

13 ,, 11 10
I~ ~· ~f) 9

14 8

15

16

.1 •
!':.

ur J 4

7

6

236 Apple lie Users Handbook

The arrows are called plotting vectors. These vectors must be
translated into their binary codes. The following table supplies ·
these binary codes.

Draw vectors 100 t up
101 - right
110 ! down
111 +- left

Move vectors 000 t up
001 - right
010 ! down
011 left

An example of a move vector could be vector #2 from the square.
A move vector plots nothing onto the screen. It merely moves
the starting position of the next vector. An example of a draw
vector could be vector #11 . A draw vector draws a line.

The easiest way to accumulate the necessary binary information
is by using a table as shown on page 237.

Apple lie Graphics 237

Table 6-3. Vectors

vector# direction binary code

1 I move 010
2 I move 010
3 - plot 101
4 - plot 101
5 1 plot 100
6 1 plot 100
7 1 plot 100
8 1 plot 100
9 - plot 111

10 - plot 111
11 - plot 111
12 - plot 111
13 I plot 110
14 I plot 110
15 I plot 110
16 I plot 110
17 - plot 101
18 - plot 101

The Apple lie stores information in words of eight bit binary
numbers. Because the binary direction codes are only three bits
long, it would be wasteful to put only one plotting vector in a
memory location. Usually two and sometimes three plotting
vectors can be stored in a specific memory address.

A few rules must be followed while packing the binary codes
into memory:

1- all bytes are read from right to left.
2- if all remaining sections of a byte contain all zeros

the rest of the byte will be ignored.
3- only a move instruction may be placed in section X

of a byte.

238 Apple lie Users Handbook

A memory byte may be divided as follows.

5 4 3 2 1 0

x y z

To pack the binary codes in Table 6-3 into memory locations,
perform the following steps. Place the binary code for vector #1
into section Z of a byte.

Jx x I x x x 0 1 0

Place the binary code for vector #2 into position Y.

Ix x I o 1 o I o 1 o I

If the next vector is a move vector, place it in section X. In our
example, the square, it is not a move vector (vector #3 =plot-).
If the next vector is not a move vector, place two zeros in section
x.

(o o 0 1 0 0 1 0

Notice that a" move - f" vector may not be placed in section X.
In fact, in any byte, a "move - f" vector must always have
another command to the left of it. This is due to rule 2, as stated
previously.

After a byte has been filled, start filling the next byte in a similar .
manner (vector #3 into section Z of byte 2) .

x y

0 1 0
1 0 1

z

byte 1
byte 2

Apple lie Graphics 239

This process should be continued until the list of vectors has
been exhausted .

0 0 0 1 0 0 1
0 0 1 0 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 1 0
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 1 1 0 1 1
0 0 1 1 0 1 1
0 0 1 0 1 1 0

The last byte should be set to zero.

00010010
00101101
00100100
00100100
00111111
00111111
00110110
00110110
00101101
00000000 =O

0
1
0
0
1
1
0
0
1

byte 1
2
3
4
5
6
7
8
9

These byte values should now be converted to hexidecimal. This
is done by repartitioning the bytes into sections of 4 bits each.

Use Table 6-4 to convert a four digit binary number into a single
hexadecimal digit.

0001
0010
0010
0010
0011
0011
0011
0011
0010
0000

0010
1101
0100
0100
1111
1111
0110
0110
1101
0000

12
20
24
24
3F
3F
36
36
20
00

240 Apple lie Users Handbook

Table 6-4. Binary-Hex Conversion

0- 0000 8 -1000
1 - 0001 9 -1001
2- 0010 A -1010
3 - 0011 B -1011
4- 0100 c -1100
5 - 0101 D -1101
6 - 0110 E -1110
7 - 0111 F -1111

The series of bytes previously calculated is called a shape
definition.

12 2D 24 24 3F 3F 36 36 2D 00

A little more information will be needed to complete the shape
table.

Shape Table Directory

The shape table directory contains the number of shape defini­
tions in the table. It also points to the starting location of each
shape definition. A maximum of 255 shapes may be defined in a
shape table.

The first byte of the shape table contains the number of shape
definitions in the table. The second byte is not used. Starting with
the third byte, a table of indices is stored, which references the
starting addresses of the individual shape definitions.

byte 0 t-----------1- #of shapes
byte 1
byte 2
byte 3

- Unused t----------t
- offset of 1st shape

- offset of 2nd shape byte 4
byte 5
byte 6
byte 7

• •
•

Apple lie Graph ics 241

The offset is the value that must be added to the starting address
of the table to obtain the starting address of a specific shape
definition.

An example will be developed using the previously calculated
shape definition of a square. The shape table w ill be stored at
memory locations 1 F00-1 FOD. Therefore, memory location
1FOO must contain the number of shape definitions in the table.
In our case, this is one.

1FOO 01

The value stored in the next location is insignificant.

1F01 00

The memory location 1 F02 and 1 F03 must contain the value of
the offset of shape definition number one. The starting address
of the shape definition has been chosen at 1F04. The offset from
1 FOO is, therefore, 4 bytes.

1F04
-1FOO

0004
high byte = 00 low byte = 04

This value must be stored in memory locations 1F02-1F03. Values
must be stored low byte first. This means that the 04 is stored in
location 1 F02.

1F02 04 low byte
1F03 00 high byte

242 Apple lie Users Handbook

Our completed shape table appears as follows:

1FOO

1F01

1F02

1F03

1F04

1F05

1F06

1F07

1F08

1F09

1FOA

1FOB

1FOC

1FOO

01

00

04

00

12

20

24

24

3F

3F

36

36

20

00

} directory

shape
definition

This shape table maybe entered into the computer by using the
monitor.

*1FOO: 01 00 04 00 12 20 24 24 3F 3F 36 36 20 00

The starting address ·of the shape table must be stored at memory
location EB. The monitor command:

*E8:00 1F

Apple lie Graphics 243

accomplishes this, as would two BASIC POKE commands.

] POKE 232,0
] POKE 233,31

Saving a Shape Table

To save a shape table on cassette tape, three data values are
required . The starting address and ending address of the shape
table must be known. Also the difference between the two must
be known. In our example,

STARTING ADDRESS 1FOO
ENDING ADDRESS 1FOD
DIFFERENCE OD

The difference must be stored in the memory location 0, low
byte first. From the monitor, enter the following:

* 0: OD 00

Now write all necessary information to cassette tape by entering
the following :

* 0.1W 1F00.1FODW (no return)

Do not press the RETURN key until the RECORD button has
been pressed on your recorder.

To use the tape, rewind it to the beginning of the stored shape
table. Next, enter the following BASIC command.

SH LOAD

The console speaker will be activated twice upon completion of
the command.

A shape table can also be stored on a floppy disk. The BASIC
BSA VE command could be used to store the table.

244 Apple lie Users Handbook

BSA VE T ABLE,A$1 FOO,L$0E

The shape table may be loaded back into the computer by
executing the following.

BLOAD TABLE

After Binary LOADing the table into the computer from disk,
memory location E8 must be loaded with the starting location of
the shape table. This is automatically accomplished when
SHLOAD is executed with a cassette tape.

Using the Shape Table

BASIC has four commands which can be used to display and
manipulate previously defined shapes.

SCALE

DRAW
XDRAW
ROT
SCALE

The SCALE command gives the size at which a shape is to be
displayed. The SCALE command takes the following form,

SCALE= x

xis a numeric arguement with a range of 0-255. This command
should be executed before DRAWing any shape to the screen.

If x = 10 then the Apple lie will draw each vector in the shape
definition to a length of 10 pixels.

ROT

The ROT command rotates the shape around its center. The
syntax of this command is as follows:

ROT=x

Apple lie Graphics 245

xis a numeric argument with a range of 0-63.

0

37 32

When x = 16, any shape that is drawn will be displayed with a
rotation of 90° . The variable x may assume a value between
0-255. The number used to calculate the rotation is x modulo 64.

DRAW

The syntax of the DRAW command is as follows:

DRAW n AT x,y

n is the number of the shape to be drawn. x,y is the coordinate on
which the shape is to be centered. DRAW will plot the shape
using the previously chosen rotation , scaling, and color (ROT,
SCALE, and HCOLOR respectively). If ORA W is used without
specifying a coordinate, the shape will be drawn at the last
location that was plotted to.

XDRAW

The XDRAW command allows the erasing of a previously dis­
played shape. XDRA W will not change any of the background
graphics. The syntax of this command is very similar to that of the
DRAW command.

XDRAW n AT x,y

246 Apple lie Users Handbook

n is the index of the shape in the shape table. x,y is the position
from which to erase the shape.

In order to erase a previously displayed shape, the ROTation,
SCALE, and HCOLOR variables must be the same as when the
shape was drawn.

PROGRAMMING WITH SHAPE TABLES

Shape tables can be used in a variety of implementations.

They are especially useful for movement and pattern replication.
The following programs serve as examples of the effects of exe­
cuting the four shape table commands.

PROGi

10 HGR2
20 FOR I = 1 TO 40
30 SCALE= I
40 ROT= I
50 HCOLOR =1/6
60 DRAW 1AT140,96
70 NEXT I
80 GOTO 20

10 HGR2
20 SCALE= 20
30 HCOLOR = 3

PROG II

40 FOR I= 0 TO 63
50 ROT= I
60 DRAW 1AT140,96
70 XDRAW 1AT140,96
80 NEXT I
90 GOTO 40

10 HGR2
20 ROT= 1

PROG Ill

30 FOR J = 0 TO 7
40 HCOLOR =J
50 FOR I = 1 TO 40
60 SCALE = I
70 DRAW 1AT140,96
80 NEXT I
90 NEXT J

100 GOTO 30

Apple li e Graphics 247

CHAPTER 7.
THE SYSTEM MONITOR

Introduction

The System Monitor is a set of machine language programs bui lt
into the Apple lie. The System Monitor, or operating system, was
written to control the system functions of the Apple. The system
functions include:

• monitoring the keyboard and peripherials for inputs
• displaying output on the screen
• saving and retrieving programs from cassette
• controlling the speaker
• allowing the user access to machine language

The operating system's programs are used by high level lan­
guages such as Applesoft and Integer BASIC. The Apple Disk
Operating System also uses these machine language programs.

Appendix I lists many of the more useful machine code pro­
grams as well as their starting locations. These programs have
been written as subroutines, so that other programs may access
them.

The remainder of this chapter will focus on the subset of pro­
grams that allows the user direct access to machine language.
The balance of the chapter assumes at least a rud imentary
knowledge of 6502 machine language.

Activating and De-activating the Monitor

When the computer is powered-up, a disk boot is attempted,
after which control is given to Applesoft BASIC. In order to
activate the Monitor, type:

250 Apple lie Users Handbook

CALL -151

This immiediate mode statement tells the Apple to jump to
memory location FF69 16 which is the starting address of the
monitor. The montor should now have displayed its asterisk
prompt.

In a disk based system, there are two versions of the monitor. The
newer version is stored in ROM. During the power-up sequence,
when the computer boots DOS, the old version is loaded into
RAM.

The newer version has the same standard input and output
subroutines, but a few features are different. For example,
because the older version was written for the Apple II, it doesn 't
support the arrow keys for cursor movement. When INT is typed
in Applesoft to activate Integer BASIC, the old monitor is also
activated. It remains active until either FP is typed to return to
Applesoft or PR#3 is typed to activate the 80-column firmware.
Part of the 80-column initialization sequence loads the newer
monitor from ROM to RAM. After this has occurred, the new
monitor will remain active until the computer has been shut off.

The old monitor has one advantage over the newer version. The
old monitor has a mini-assembler built in. The new version does
not. This means that Integer BASIC must have control, when the
monitor is activated to use the mini-assembler.

To return to BASIC, type CTRL-B, the return-to-BASIC command.
Control is given to whichever BASIC had control when you
activated the monitor. The CTRL-B command erases all variables
and any BASIC program stored in RAM. It is analogo1:1s to typing
NEW in BASIC.

Since erasing all variables and BASIC program storage could
prove quite unproductive, the monitor offers the option of
returning without erasing these. The CTRL-C, command accom­
plishes the return to BASIC without destoying the program or
variables. The user can generate the same effect as CTRL-C by
pressing CTRL-RESET or by entering the command line 3DOG.

The System Monitor 251

Commanding the Monitor

The important thing to remember when using the monitor is that
it is very picky. In other words, monitor commands must be
entered with the correct syntax. In this section, the monitor
commands will first be presented in detail. There will also be a
short lookup section at the end of the chapter.

The monitor accepts command lines up to 255 characters in
length. All command lines must end with a [return] . Commands
contain three types of information: command characters, add­
ress values and data values. Command characters are single
alphabetic characters, control characters and punctuation marks,
usually preceded by an address value.

Addresses and data values are expressed in hexadecimal nota­
tion. Addresses can consist of as many as four digits; data can
consist of up to two. If an address or data value is entered with
fewer than the maximum number of digits respectively, the
monitor automatically adds leading zeros. If a value greater than
the maximum is typed in, the monitor only recognizes the
rightmost field of. digits. For example, if 78FE4 is entered as an
address only 8FE4 will be recognized . Likewise if 788FE is entered
as a data value, then only FE will be recognized.

Quite a few examples are contained in this chapter. To make for
easier reading, the computer's responses will be displayed in
bold. Because of the random nature of the computer's memory
after power-up, some of the data values which the computer
displays may differ from these values in our examples.

Memory Examine

To examine the contents of any memory location , just type the
hexadecimal address of the location, followed by return.

*E300
E300-88

*FF
OOFF-ED

252 Apple lie Users Handbook

In the second example, the monitor supplied the leading zeros.

After the monitor received the address, it printed that address
followed by its contents.

It also did one more thing which was not quite so apparent. It
stored the memory location that was examined as the last
opened address. Although this seems rather unnecessary now,
this extra step will prove very convenient when other monitor
commands are used .

Memory Dump

Examining one location at a time is fine, but this could be come
quite tedious should, say, 100 consecutive locations need to be
displayed. The monitor's answer to this dilema is referred to as a
memory dump.

A memory dump is accomplished by typing a period(.), followed
by an address. The monitor will display the contents of each of
the bytes which follow the opened address up to the final
address , as specified in the command line. The amount of data
displayed depends upon the differnece between these two
addresses.

*EOOO
E000-20

Hex EOOO is now the last opened address.

*~. EOOF

EOOl -00
E008 -4C

FO
ED

4C
FD

83
60

E2
8A

85
29

33
20 FO

Data is always displayed in groups of eight or less. This simplifies
the reading of the data. For example, the contents of memory
location E009 is easily read as ED. The monitor again stores the
location of the last displayed location, EOOF.

Sometimes it is difficult to know how many locations one wishes

The System Monitor 253

to display. The user can quickly step through memory eight bytes
at a time by merely pressing the [return] key. The monitor will
display eight bytes in a row, but it is particular which eight it
displays. The monitor will display an address ending with a zero
or an eight followed by the contents of that address as well as the
data of the next eight bytes. Therefore, the first time [return] is
pressed, the balance of whichever line the monitor would have
displayed will be printed. Each successive [return] produces the
next display line.

Monitor commands can be combined into one command line.
For example, to display the contents of locations 0300 to D31C
Hex, type:

*D300.D31C
D300-AF D3 48 20 9A D3 68 20
D308-2E DO AE 23 03 60 20 F9
D310-D2 4C 7D DO AD 25 03 4A
D318-20 90 D3 20 75

Register Examine

When the monitor is activated, the contents of the registers in
the 6502 are saved in page-zero. The only register not saved is the
program counter. The accumulator, X-register, Y-register, pro­
cess status register and stack pointer are saved in memory loca­
tions 45 through 49, respectively. Instead of typing 45.49 to dis­
play the contents of these registers, the monitor provides the
register examine, CTRL-E, command. After displaying the con­
tents of these registers, the monitor stores 45, the address of the
accumulator, as the opened address.

*CTRL-E
A=18 X=FE Y=FF P=BO S=F8

Changing Memory

We have now seen how any location in memory can be dis­
played. If Picasso could only have looked at his canvas without
changing it, how much of an artist would he have been? The
same concept applies to the programmer and his canvas, the
computer.

254 Apple I le Users Handbook

The computer cannot be made to do useful work unless it can be
given instructions. This is done by changing the contents of
memory.

To extend the metaphor a bit further, (since) the Apple lie is a
half-finished canvas, it can understand BASIC commands, store
copies of programs on disk and perform numerous other input
and output functions. However, if one just randomly dabbed his
paint brush around the computer's memory, a nicely started
painting could be ruined.

There are a few places not to play around. The most important of
these is page-zero. Page-zero is where BASIC and DOS store
important variables about themselves. For example, the location
of the BASIC program is stored in page-zero. If page-zero must
be accessed (usually because of the 6502's indirect addressing
techniques), locations F9 to FD can always be used safely.

Keeping this cautionary note in mind, here is how to change the
contents of memory. First, open the location to be changed.

*357
0357-FF

Now, type a colon followed by the new value you wish to store.

* :47
*357
0357-47 - new value stored

These commands can be combined.
*357:86
*357
0357-86 - just to check

Just as there Was a shortcut for examining a large block of
memory, there is also a shortcut for changing large portions of
memory. To place the values 04 53 F88B FF in successive locations
starting at 3703, enter the following:

*3703: 4 53 F8 8B FF
*3703
3703-04 -to check
*(ret) /
53 F8 88 FF

The System Monitor 255

To store data in consecutive memory locations, type the address
followed by a colon and the data. Each data item should be
separated with a blank space. The monitor can accept as many
data values as it can fit on a command line (255 characters).

The monitor stores the address after the last changed address as
the opened address. Therefore, to continue entering consecu­
tive data values, just type a colon followed by the remainder of
the data.

*300:123 4 5
*:6 7 8 9 A B C D E F
*300.30E
0300-01 02 03 04 05 06 07 08
0308-09 OA OB oc OD OE OF

Changing Registers

When the monitor executes any program using the GO com­
mand (described later), it first loads the 6502's registers with the
values in locations 45 through 49. To alter these values, first
execute a register examine.

*CTRL-E
A=OF X=FC Y=07 P=BO S=11

Then, type a colon followed by the new values.

*: 12345
*CTRL-E
A=01 X=02 Y=03 P=04 S=OS

This command sequence works because the examine register
command stored 45 as the opened address.

Move Data

Suppose that the data which is to be stored in one memory block
already exists in another memory block. The act of reading that
data followed by re-entering it would involve wasted effort. The

256 Apple lie Users Handbook

monitor supplies the move, M , command to accomplish this task
more easily.

To move a block of data, the monitor must know the data 's
source as well as its destination . It seems that this would require
four addresses: the start and end of both the source and
destination . One of these addresses supplies redundant informa­
tion, the ending address of the destination. The format of the
instruction, therefore, is as follows :

XXXX< YYYY.ZZZZ M

XXXX stands for the Hex destination starting address. YYYY refers
to the source starting address. ZZZZ refers to the source ending
address. The less than symbol can be thought of as a funnel
which channels data from the source to the destination.

*300: 0 0 0 0 0 0
*: 0 0 0 0 0 0
*: 0 0 0 0
*300.30F
0300- 00 00 00 00 00 00 00 00
0308- 00 00 00 00 00 00 00 00

380: 10 20 30 40 50 60 70 80
*:90 AO BO CO DO EO FO FF
*380.38F
0380- 10 20 30 40 50 60 70 80
0388- 90 AO BO CO DO EO FO FF

*300 < 380.38FM
*300.30F
0300- 10 20 30 40 50 60 70 80
0308- 90 AO BO CO DO EO FO FF

Comparing Blocks of Memory

The monitor's verify, V, command compares two blocks of
memory. If these two blocks are identical, the monitor will
return the asterick prompt. If these blocks are not identical , the

The System Monitor 257

monitor will display the source address of the discrepancy, its
contents, and what data should have been there.

The format of the verify command is identical to that of the move
command, except for the trailing command letter.

XXXX< YYYY.ZZZZ V

XXXX is the starting address of the destination (what the source is
compared to). YYYY is the starting address of the source, and
ZZZZ is the ending address of the source.

*300< EOOO. EOOF M
*300< EOOO. EOOFV
*300.30F
0300- 20 00
0308- 4C EO

FO
FD

4C
60

B3
8A

E2
29

EOOO-EOOF contains the same data as 300-30F.

*308:AA BB
*300< EOOO. EOOFV
E008- 4C (AA)
E009- ED (BB)

85
20

33
FO

Because of the manner of which the move and verify commands
are executed, certain programming tricks are possible. To store a
pattern of data in memory procede as follows:

Store the pattern to be replicated in the first position of the
range.

*1000: AA BB CC DD

If N is the number of data values in the pattern , and if SSSS is the
start address and EEEE is the ending address; enter the following:

SSSS+N< SSSS.EEEE-N M

258 Apple lie Users Handbook

To replicate AA BB CC DD from 1000 to 103F, enter the
following:

*1004< 1000.103BM
*1000.103F

1000-AA BB cc DD AA BB cc DD
1008-AA BB cc DD AA BB cc DD
1010- AA BB cc DD AA BB cc DD
1018- AA BB cc DD AA BB cc DD
1020- AA BB cc DD AA BB cc DD
1028- AA BB cc DD AA BB cc DD
1030- AA BB cc DD AA BB cc DD
1038- AA BB cc DD AA BB cc DD

Verify can be used in a similar manner to determine whether a
pattern repeats itself in memory. For example, to determine if
the pattern in the preceding example does indeed exist in
memory, type the following.

*1004< 1000.103BV

This command is useful in evaluating whether an area of memory
has been set to a certain value. First clear page-20.

*2000:0
* 2001 < 2000.20F EM

Next, change the following two locations.

*2040: 47
*2080: FF

Finally, check page-20.

*2001 < 2000.20FEV

203F- 00 (47)
2040- 47 (00)
207F- 00 (FF)
2080- FF (00)

The System Monitor 259

The monitor indicates the discrepancy at location 2040 with the
first two lines of output. It treats the error at 2080 in the same
manner.

Saving and Retrieving Data with the Cassette

The monitor's write, W, command writes the contents of a range
of memory locations onto cassette tape. The command syntax is
straightforward. The command is entered by typing the starting
address; a period; the ending address; and a W. The following
example will store the data in locations 1000 to 1040 on cassette
tape.

*1000.1040W - Don't press the return here

Note that we did not immediately end the command by pressing
return . The reason for this was to first allow for the recorder's
play/record button to be pressed. Press record, followed by
return. After return has been pressed , the monitor will write a 10
second steady tone leader, and will then record the data and the
checksum. When the recording process has been completed,
the monitor will cause the console speakers to beep.

The monitor's read, R, command is similar in operation to the
write command. Enter the address of the range where the data is
to be stored , then type R (again, no return) .

*2000.2040 R

To ready the cassette for input to the computer, rewind the tape
to the beginning of the leader tone. A steady tone will be emit­
ted. Press the recorder's play key, wait a few seconds, and then
press return.

The monitor will read the data and the checksum, and will then
verify that the data is correct. If no errors are discoverd the
monitor will respond with a beep. However, it the checksum
does not match the stored data, the message ERR will be
displayed .

260 Apple lie Users Handbook

The checksum is a number which the Apple calculates from the
data when it is saved. This number is unique for any specific data.
Therefore, if the checksum does not verify when it is read, an
error most likely occurred when the data was written to the
cassette.

Saving and Retrieving Data from Disk

Unfortunately, the cassette is slow and very prone to errors.
Therefore most users prefer a disk drive for data storage. How­
ever, the monitor does not include commands for reading or
writing to diskette. In order to save assembly code on disk, the
user must first activate BASIC, Then, the binary save (BSA VE) or
binary load (BLOAD) commands must be executed in order to
save or read the data.

To save the same memory addresses as were saved in the cassette
example (1000-1040), the following BASIC command would be
required:

*CTRL-C - into BASIC
] or > BSA VE TXT A,A$1000,L$41

TXT A is the name of the disk file. A stands for at memory loca­
tion. L stands for length of memory block. In the preceding
example, the block of data beginning at address $1000 and
extending to $1040 would be saved on disk with the filename,
TXTA.

To recall this block of data from disk, type :

] or > BLOAD TXT A,A$2000

This command will load the file at locations 2000 to 2040. If
"A$2000" had not been entered on this line, the binary file
would have been loaded at the same locations from which it had
been saved (1000-1040).

It is good practice to verify that data written to the cassette unit
has been saved accurately. Although errors are encountered

The System Monitor 261

with much less frequency on disk writes, it is also good practice
to verfiy those as well.

To verify that the machine code has been faithfully reproduced,
first save the code, using the procedures outli!'.JeS previously.
Then, load the information back into the computer, but load it at
a different address. The monitor's verify command can now be
used to compare the two sections of code. If the data had been
saved correctly, the two sections. will be identical.

*1000.10FF W
rewind tape
*2000.20FF R
*1000< 2000.20FF V

*

If the verify command causes any addresses and data values to be
displayed, the save was not successful. If only the asterisk prompt
was displayed, the save worked perfectly.

Other Input/Output Commands

The format in which information is displayed on the screen is
controlled by the monitor's Inverse and Normal commands. If
"I" is included in a command line, all monitor inputs and outputs
displayed thereafter will be displayed in inverse video. This
process can be reversed by including " N" as part of a subsequent
command line.

*EOOO
EOOO- 4C
*I EOOO N EOOO
EOOO- 4C inverse video

EOOO- 4C normal

*

The monitor's input and output can also be redirected to peri­
pheral devices. The printer command directs the monitor 's out­
put. The keyboard command determines the device from which
the monitor will accept input. The printer and keyboard com-

262 Apple lie Users Handbook

mands perform the same function as the BASIC PR# and IN#
commands, respectively.

The syntax for the printer command is as follows:

*# CTRL-P

#represents the slot number of the peripheral device to which
data is to be sent.

For example, the following commands would dump the con­
tents of addresses 300 to 3FF to the peripheral device with its card
in slot #1 .

*1 Ctrl -P
*300.3FF

The preceding command causes subsequent monitor output to
be directed to the device whose card is in slot #1 . If you wish to
redire~t output to the screen, you can, do so by executing the
following command:

*0 Ctrl-P

The keyboard command functions in a manner quite similar to
the printer command, except that data will be accepted from the
specfied device rather than output to it. The following command
causes subsequent data to be accepted from the device whose
controller card is in slot #1 .

*1 Ctrl -K

Data can again be accepted from the keyboard by executing the
following command.

*0 Ctrl -K

The monitor can input and output through a single peripheral.
For example, suppose a modem is connected to a serial port wit h

The System Monitor 263

its card in peripheral slot #5. The computer could accept infor­
mation from the modem as well as information to it. By entering
the following commands, the computer would be instructed to
use the modem.

*5 CNTL-P
*5 CNTL-K

MACHINE LANGUAGE PROGRAMMING

Introduction

The process of writing a machine language program is a long and
tedious one compared to the process of writing a program in
BASIC. Why then would a programmer wish to write a program
in machine language? The answer is speed. Machine language
programs execute at a rate anywhere from 10to1000 times faster
than a BASIC program.

Mini-Assembler

An assembler greatly facilitates the process of writing a machine
language program. An assembler translates assembly language
mneumonics to operation codes which can be executed by the
microprocessor. Without an assembler, the programmer would
have to look up each operation code, one-by-one.

A mneumonic is a short abbreviation for an assembly language
instructions. For example, JSR is the mneumonic which stands
for the jump to subroutine operation. The microprocessor does
not understand mneumonics. It does however understand hex­
adecimal codes. The purpose of the assembler is to translate a
mneumonic (ex. JSR) to its equivalent hex value (#20).

The mini-assembler, built into Integer BASIC, is not full-fledged
assembler. The mini-assembler does not support labels, nor does
it remember the source once return has been pressed. The
mini-assembler merely converts the mneumonic entered in the
command line into its equivalent hex value(s).

264 Apple lie Users Handbook

The assembler then stores these hex values in memory. The
original mneumonic entry will be lost. Since the mneumonic is
not saved in a source file, modification of the machine language
program would be difficult.

Activating the Mini-Assembler

Integer BASIC's assembler, can be executed by entering the
following command:

> CALL -2458

The mini-assembler could also be called directly from the moni­
tor as long as Integer BASIC had previously been active. The
mini -assembler can be loaded from the monitor by executing
the following command:

*F666G

The G denotes the monitor 's G command. This command will be
explained in detail later in this chapter.

These two commands are known as the assembler enter com­
mands. These commands cause a JMP (Jump) to be executed to
the starting address of the mini-assembler. Once this instruction
has been executed , the mini-assembler will function and its
prompt(!) will be displayed .

Entering the First Program Line

Once the mini-assembler's prompt(!) has been displayed, the
programmer must input a line consisting of the assembly lan­
guage program's starting address followed by the first mneu­
monic instruction . These must be separated by a colon. This is
shown in the following example.

!300:JSR FBDD
0300- 20 DD FB JSR $FBDD

The System Monitor 265

Entering Subsequent Program Lines

The assembler is now ready to accept another program line. To
enter the next instruction in the next consectutive memory
location, enter a blank space followed by the next instruction. Be
sure to include the space as it is important. The following is an
example of the correct syntax for the entry of a subsequent
program lines.

! JMP 300
0303- 4C 00 03 JMP $0300

If any errors are encountered in an input line, the assembler will
cause the speaker to beep and will display an arrow (\)beneath
the offending character.

A second error can occur if a branch instruction is attempted in a
program of more than FF16 bytes.

Returning to the Monitor

Suppose the assembler was in use and the programmer wished
to return to the monitor. This can be accomplished by prefixing
the monitor command (FF69G) with the$ character as shown in
the following example.

!$FF69G

When $ prefixes a monitor command while the assembler is
active, this monitor, is executed. The FF69G monitor command
executes a jump to the monitor's starting location. The$ is not
limited to usage with only FF69G. lt can be used with any monitor
command.

Converting Assembly Language Hex Codes Back into Mneu­
monics

The monitor includes a list command which allows the pro­
grammer to convert hex data in memory back into mneumonics.
When the following command is entered:

266 Apple lie Users Handbook

*300L

The following data will be displayed:

0300- 20 DD FB JSR
0303- 4C 00 03 JMP
0306- 00 BRK
0307- 00 BRK
0308- 00 BRK
0309- 00 BRK
030A-OO BRK
0308-00 BRK
030C-OO BRK
030D-OO BRK
030E- 00 BRK
030F- 00 BRK
0310- 00 BRK
0311- 00 BRK
0312- 00 BRK
0313- 00 BRK
0314- 00 BRK
0315- 00 BRK
0316- 00 BRK

$FBDD
$0300

f
I

The 300 indicates the starting address of the first assembly lan­
guage instruction (in hex) which is to be converted back into a
mneumonic. The L indicates the list command.

In our example, all data displayed after 306 will be random as
assembly language instructions were only entered at addresses
300-305 inclusive.

The L command automatically fills the screen (20 lines) with the
contents of memory beginning with the address specified as its
argument.

When a listing is complete, the monitor stores the last line that
was listed as the program counter. If the L command is used
without an argument, the monitor uses the program counter as
the first line to be listed. Using a series of single L's, the pro-

The System Monitor 267

grammer can conveniently list a program which would fill more
than one screen.

Executing a Machine Language Program

The monitor's GO command is used to execute a machine lan­
guage program.

When GO is executed, the microprocessor's registers will be
loaded with the values stored in addresses $45 to $49 as follows :

• The microprocessor's accumulator will be loaded with the
value stored in address $45.

• The X register will be loaded with the value stored in $46.

• The Y register will be loaded with the value stored in $47.

• The processor status register will be loaded with the value
stored in $48.

• The stack pointer will be loaded with the value stored in $49.

Once the registers have been loaded, a JSR (Jump to Subroutine)
command will be executed to the last opened memory location.

Since the monitor treats all programs as subroutines, a RTS
(Return from Subroutine) instruction should be the last instruc­
tion in the program.

We will illustrate the usage of GO using the following example
(which you probably have already entered).

!300:JSR FBDD
! JMP 300

This program can be executed by entering the following:

*300 G

268 Apple lie Users Handbook

Once you have started the program, you can stop it by pressing
Ctrl-Reset.

This program causes the speaker to buzz. This is accomplished
using the monitor bell subroutine. This is located at memory
address FBDD. The second instruction (JMP 300) causes the pro­
gram to repeatedly jump to the bell subroutine. This results in a
continuous buzzing being emitted from the speaker.

The various 1/0 subroutines are listed in Appendix I. These can
be executed via a machine language program.

Creating a Custom Monitor Command

The monitor's CTRL-Y command causes program control to be
transferred to the instruction at memory location 3F8. Addresses
3F8-3FF are available for usage by the programmer. Generally,
because only 8 bytes are available, a JMP instruction will be
stored at these addresses. However, a machine language pro­
gram could also be stored there.

One useful application of the CTRL-Y command is automatic
execution of the mini-assembler. By storing the following data
values at locations 3F8-3FA:

JMP
I

3F8: 4C

' Address F666 ,. ,...., '
66 F6

CTRL-Y will result in automatic execution of the mini-assembler.

The programmer could avoid having to enter the preceding
command by adding the following program line to the DOS
"Hello" file . This can be accomplished by entering the following:

]UNLOCK HELLO
]LOAD HELLO
]5 POKE 1016, 76: POKE 1017,102:POKE 1018,246
]SAVE HELLO
]LOCK HELLO

The System Monitor 269

After this entry has been made, upon power-up, the command
to start the assembler will be resident in location 3F8-3FA. Ctrl-Y
could then be used to automatically activate the monitor.

LOOK UP SECTION

Into/Out of Monitor

CALL-151

CNTL-RESET
CNTL-C
3DOG

CNTL-B

Memory Examine

nnnn

mmmm.nnnn

[return]

Memory ~hange

nnnn: dd 1 dd 2 ...

Register Examine

CTRL-E

Activates Monitor.

Returns to BASIC.
- program and

variables intact

Returns to BASIC.
- program and

variables erased

Displays contents of address
nnnn

Displays contents of addresses
mmmm through nnnn

Displays contents of as many
as eight addresses following
the last opened address

Store data values in consecu­
tive locations starting with
nnnn

Display contents of 6502's reg­
isters which are loaded prior to
program execution

270 Apple lie Users Handbook

CTRL-E: ddA ddx ddv ddp dd 5 Stores values for registers

Move and Verify

xxxx< yyyy.zzzz M

xxxx< yyyy.zzzz V

Saving and Loading Program

ssss.eeee W

ssss.eeee R

Copy contents of range of
addresses yyyy through zzzz
to range starting at xxxx

Compares the contents of
addresses yyyy through zzzz
with the range beginning with
xxxx.

Saves contents of addresses
ssss to eeee onto tape.

Loads from tape to addresses
ssss to eeee.

BSAVE NAME, A$xxxx,L$yyyy Saves in disk file " NAME" con­
tents of the range of addresses,
starting at xxxx with length
yyyy.

BLOAD NAME, A$xxxx

Input/Output

N

CNTL-P

Loads memory addresses start­
ing at xxxx with disk file
" NAME". If A$xxxx is not spec­
ified, loads at address at which
data was saved.

Sets normal display mode.

Sets inverse display mode.

Directs output to peripheral
with card in slot#.

CNTL-K

Mini-assembler

CALL-2458
F666G

$FF69G

CNTL-RESET

$

Running/Listing

nnnn G

nnnn L

Your Command

CNTL-Y

The System Monitor 271

Accepts input from peripheral
with card in slot#.

Activates assembler

Activates monitor.

Activates INT BASIC

Executes monitor command
while using assembler.

Executes machine language
program at location nnnn

Disassembles 20 machine lan­
guage instructions starting at
location nnnn

Jumps to machine language
subroutine at location 3F8.

CHAPTER 8.
THE 80-COLUMN BOARD

Unlike its predecessors, the Apple lie has an additional slot built
into its motherboard. The slot is called the auxiliary expansion
slot. This slot accepts one of two peripheral expansion cards.
One of the cards provides the Apple lie with extended display
capability as well as an additional 64K of memory. The other card
provides only for the extended display. Since the extended
display capability of both cards is identical, all references to the
cards in this chapter shall be "The Apple 80-column board".

The Apple 80-column board allows the computer to display a full
80 columns on the screen. It also allows for additional editing
features, including screen editing.

The 80-column board can be used with Pascal, CP/M*, or BASIC.
The 80-column board is automatically switched on whenever
Pascal or CP/M is used. However, this is not the case with BASIC.

When using CP/M, all features of the 80-column board are
automatically activated. When using Pascal, all features except
the cursor up and cursor down keys are functional. This can be
remedied through execution of the SET UP program provided
on the Pascal Disk, Apple 3.

As mentioned earlier, set up with BASIC is more complex. This is
due to the fact that the Apple lie was designed to be software
compatible with the Apple II and Apple II+ computers.

* CP/M is a trade mark of Digital Research.

274 Apple lie Users Handbook

Activating the 80-Column Board in BASIC

To enable the 80-column board, first power-up the computer as
usual. Then, after Applesoft has control of the computer, enter
the following,

PR#3

to activate the board. It is usually convenient to depress the
CAPS LOCK key since Applesoft does not understand lowercase
letters.

The statement PR#3 may seem a bit obscure. The PR#3 command
is executed because the auxiliary expansion slot is hard-wired to
peripheral slot number three. Recall that PR# is the BASIC
statement used to activate a peripheral for output.

Since non-Apple manufactured 80-column boards are tradition­
ally used in peripheral slot #3, the auxiliary expansion slot has
been hard-wired to this slot.

This wiring arrangement has one drawback. If any peripheral
card is inserted in slot #3, it will be rendered inactive by the
80-column board.

The effect of activating the 80-column board is that the screen is
cleared . Next, the 80-column cursor will be displiiyed. The 80-
column cu rsor is only half as wide as the standard BASIC cursor.
It is solid instead of checkered, and does not blink.

Everytime the computer is powered-up, the 80-column card
must be activated before it is used. This may prove to be quite
tedious. This tedium is inevitable in a cassette based system.
However, this situation can be remedied in a disk based system.

The 80-column board can be activated each t ime a specific disk is
used through modification of the HELLO program on that disk.
The DOS HELLO program is a BASIC program that is executed
during the power-up procedure. The computer runs this pro­
gram automatically. The HELLO program contains information

The 80-Column Board 275

used during the power-up procedure.

Certain parts of this program should not be changed. These parts
begin with line number 10. This allows only line numbers 0
through 9 to be used safely for the user's modification of t he
program.

The BASIC statement,

1 PRINT CHR$(4);"PR#3"

when added to the HELLO program, will cause the 80-column
board to be activated at power-up. This statement accompl ishes
its task by printing the DOS command PR#3.

In order to change the HELLO program, first unlock it, then load
it into the computer.

UNLOCK HELLO
LOAD HELLO

Add the following BASIC statement into the program by
entering it in response to the Applesoft prompt (]).

] 1 PRINT CHR$(4);"PR#3"

List the program to verify that line 1 has indeed been entered
correctly. Finally, save and lock the new HELLO program.

SAVE HELLO
LOCK HELLO

Deactivating the 80-Column Board

When the 80-column board is activated, output to another
device is difficult. The disk drive presents no problems, but
attempting printer output may adversely effect the display.

In order to output to a printer, the 80-column board must be
disabled . This is the case even if the 80-column board is in its

276 Apple lie Users Handbook

40-column mode (described later in this chapter). Remember, if
the cursor is solid and does not blink, then the 80-column board
is active.

To deactivate the board, type the [escape] key, followed by
CONTROL-Q.

c ESC J (CoNTRoQ - Q

The screen will revert to a 40 column display, and the blinking
checkerboard cursor will return at the bottom of the screen.

CONTROL-RESET will also deactivate the 80-column board.
However, the user is advised against this technique. The use of
CONTROL-RESET while the 80-column board is active will
disrupt display, and may cause the erasure of any RAM-resident
programs.

Selecting 40 or 80 Columns While Board is Active

Occasionally, a 40-column display may be desirable. However, it
may not be desirable to forfeit the extra editing capability of the
Apple 80-column board. This dilemma may be resolved via the
use of the 40-column mode of the Apple 80-column text board.
In the 40-col.umn mode, the text board is active, although only 40
columns are displayed.

A switch to the 40-column display can be accomplished by either
of two commands. Typing CONTROL-Q, while the board is
active will enable the 40-column mode. Notice that an escape
does not precede the CONTROL-Q. Upon receipt of this
command, the computer will display any text which had pre­
viously been displayed in the leftmost 40-columns of the 80-
column display. The width of each character will be doubled.
Pressing the escape key, followed by pressing the 4 key, causes
identical results.

Either CONTROL-R or escape,8 will return the display to the
80-column mode. Any text that had been displayed in the 40-

The 80-Column Board 277

column mode will be redisplayed in the leftmost 40-columns of
the 80-column display. The right hand side will be cleared.

The following four commands may also be used in programs to
change the display mode during program execution.

or

or

ESC 4
CONTROL-Q

ESC 8
CONTROL-R

Moving the Cursor

Select
40-column mode

Select
80-column mode

The 80-column board comes equipped with numerous editing
features. These features can be implemented through the use of
the ESC and CONTROL keys. When using a control command,
the CONTROL key must be held down before another key is
pressed. When using an escape command, the ESC key must be
pressed and released before another key can be pressed.

The easiest editing keys to understand are undoubtedly the
arrow keys. When in the escape mode, these keys allow the
cursor to be moved across the display field, without destroying
any of the text already displayed. This allows the user to edit text
anywhere on the screen. The escape mode is entered by pressing
the ESC key. It is exited by pressing the space bar. While in the
escape mode, the cursor becomes an inverse video plus sign.

While in the escape mode, the I, J, K, and M keys perform the
same function as the up-arrow, left-arrow, right-arrow, and
down-arrow keys, respectively.

The four keys, A, B, C, and D may also be used to accomplish

278 Apple lie Users Handbook

cursor movement. However, after a single keystroke, the com­
puter automatically exits the escape mode.

Moving the cursor up one row would require either of the
following key sequences:

ESC D
or

ESC f SPACE

To move the cursor up four rows would require either of the two
following key sequences.

ESC D ESC D ESC D ESC D

ESC f f f f SPACE

Use of ESC,D is cumbersome for cursor moves of more than a
few rows. The same idea applies to the use of ESC,A, ESC,B, and
ESC,C.

Editing Functions that Clear Parts of the Display

It is often necessary to clear all or parts of a display, so that new
information can be displayed neatly. The simplest of the ~om­
mands in this category is the Clear Screen command. When a
CONTROL-L is issued, either through the keyboard or in a
program, the display is cleared and the cursor is positioned in the
upper lefthand corner of the screen.

CONTROL-L clear screen

A similar command is the "clear to end of screen" command.
When the CONTROL-K command is used, the screen is cleared
from the current cursor position to the end of the screen. The

The 80-Column Board 279

position of the cursor remains unchanged.

CONTROL-K clear to end of screen

In order to clear only a specific row, the CONTROL-Z command
is used. When this command is issued, the row in which the
cursor resides is cleared. The cursor position remains un­
changed.

CONTROL-Z clear line

The CONTROL-] command will clear the line in which the cursor
resides from the current cursor position to the end of that line.

CONTROL-] clear rest of Ii ne

Scrolling the Display

The entire screen display can be scrolled up or down, without
moving the cursor position. If any information is scrolled off
either end of the screen, that test will be lost.

CONTROL-V
CONTROL-W

scroll down
scroll up

Use of CONTROL Codes from BASIC

All of the screen editing features of the 80-column board may be
implemented through BASIC. These features are used by print­
ing the escape or control character. Since the characters cannot
be entered directly into PRINT statements from the keyboard ,
the CHR$ function must be used to generate the control
characters.

The ESCAPE codes are generally not used in programs because of
their complexity.

The following example uses the scroll up and scroll down
commands.

280 Apple lie Users Handbook

CONTROL
Code

G
H
J
K
L

M
N

0

Q
R
u

v
w
y

z
\
]

10 HOME:HTAB 15
20 PRINT "BOUNCING"
30 FOR I = 1 TO 20
40 PRINT CHR$(22); -scroll down
50 NEXT I
60 FOR I = 1 TO 20
70 PRINT CHR$(23);-scro/I up
80 NEXT I
90 GOTO 30

Table 8-1. CONTROL Codes

Equiv. ESC
Code ASCII Function

7 ring bell
B,-,J 8 backspace
C,!,M 10 line feed

F 11 clear to end of screen
@ 12 clear screen

13 return
14 set normal display

(only in program)
15 set inverse display

(only in program)
4 17 set 40-column mode
8 18 set 80-column mode

CONTROL-Q 21 deactivate 80-column
board (in program)

22 scroll up
23 scroll down
25 home (no clear)
26 clear line

A,-,K 28 forward space
E 29 clear to end of line

The 80-Column Board 281

BASIC Support of the 80-Column Board

The BO-column board does not effect the functioning of the
majority of BASIC's majority commands. Only four of the
commands function differently when used with the BO-column
board. These are as follows:

Tabbing

HOME
FLASH
HTAB
INVERSE

Horizontal tabbing, while using the BO-column board, does not
operate in exactly the same manner as it does without the board.
If the numeric argument of the HTAB function is greater than 40,
an automatic wrap-around occurs. If an HT AB is attempted to
any of the columns greater than 40, an automatic wrap-around
occurs even though the display is capable ot 80 columns.
Therefore, nothing is dis~ayed in the last 40 columns.

This is remedied by the substitute HT AB command. This com­
mand is as follows:

POKE 1403,XX

XX represents the column number to which the next screen
output will be directed . HT AB XX may still be used for the first 40
columns if the programmer so desires. The substitute command
will only operate correctly when the BO-column display is being
used.

100 VTAB 5
110 POKE 1403,65
120 PRINT "OUTPUT"

Execution of the previous example will output the text, OUTPUT,
at screen location 65,6 (65th column, 5th row).

282 Apple lie Users Handbook

Use of INVERSE, FLASH, and HOME

The FLASH command is not supported by the 80-column board.
However, FLASH can be used while the 80-column board is
inactive. If FLASH is active during the activation of the 80-column
board, the screen will turn white, and LIST'ing a program may
return an unintelligible result. To recover, enter the NORMAL
command .

The 80-column board extends the INVERSE capability of the
Apple lie to include lowercase letters. Without an active 80-
column board, only capital letters can be displayed in INVERSE
video.

The HOME command works as usual, with one exception. This
exception occurs if the computer is in the inverse mode when
the HOME command is issued . While the 80-column board is
inactive, the HOME command causes the screen to be black­
ened, but all subsequent output will appear in INVERSE video.
However, while the board is active, the HOME command causes
the entire screen to be colored white, with all subsequent output
in INVERSE video.

Uppercase-Restrict Mode

A very convenient feature of the 80-column board is the
uppercase-restrict mode. Upon entering this mode, all lower­
case entries will be interpreted as capital letters, unless they are
entered between quotation marks. This feature relieves the
programmer of the tedium of repeatedly pressing the CAPS
LOCK key.

ESC,R
ESC,T

activates uppercase-restrict
deactivates uppercase-restrict

When programming, the uppercase-restrict mode is useful for
the entry of PRINT statements. BASIC requires that all com­
mands be in capital letters. It is often desirable to have a program
output in both lowercase and uppercase letters. Without an

The 80-Column Board 283

uppercase-restrict mode, a program line such as,

10 PRINT "Tucson, Arizona"

would have been very difficult to enter. The uppercase-restrict
mode allows the line to be entered using the SHIFT key only
twice.

Appendix A 285

APPENDIX A. APPLESOFT BASIC RESERVED WORDS & TOKENS

ABS (212) HTAB (150) REM (178)
AND (205) IF (173) RESTORE (174)
ASC (230) IN# (139) RESUME (166)
AT (197) INPUT (132) RETURN (177)
ATN (225) INT (211) RIGHT$ (233)
CALL (140) INVERSE (158) RND (219)
CHR$ (231) LEFT$ (232) ROT= (152)
CLEAR (189) LEN (227) RUN (172)
COLOR= (160) LET (170) SAVE (183)
CONT (187) LIST (188) SCALE= (153)
cos (222) LOAD (182) SCRN((215)
DATA (131) LOG (220) SGN (210)
DEF (184) LOMEM: (164) SH LOAD (154)
DEL (133) MID$ (234) SIN (223)
DIM (134) NEW (191) SPC((195)
END (128) NEXT (130) SPEED= (169)
EXP (221) NORMAL (157) SQR (218)
FLASH (159) NOT (198) STEP (199)
FN (194) NOTRACE (156) STOP (179)
FOR (129) ON (180) STORE (168)
FRE (214) ONE RR (165) STR$ (228)
GET (190) OR (206) TAB((192)
GOSUB (176) PDL (216) TAN (224)
GOTO (171) PEEK (226) TEXT (137)
GR (136) PLOT '(141) THEN (196)
HCOLOR= (146) POKE (185) TO (193)
HGR (145) POP (161) TRACE (155)
HGR2 (144) POS (217) USR (213)
HIMEM: (163) PRINT (186) VAL (229)
HUN (142) PR# (138) VLIN (143)
HOME (151) READ (135) VTAB (162)
HPLOT (147) RECALL (167) WAIT (181)

XDRAW (149)

286 Apple lie Users Handbook

APPENDIX B. INTEGER BASIC RESERVED WORDS

ABS END LET PDL SAVE
AND FOR LIST PEEK SCRN
ASC GOSUB LOAD PLOT SGN
AT GOTO LOMEM: POKE STEP
AUTO GR MAN POP TAB
CALL HIMEM: MOD PRINT TEXT
COLOR= HUN NEW PR# THEN
CON IF NEXT REM TO
DEL IN# NOT RETURN TRACE
DIM INPUT NOTRACE RND VLIN
DSP LEN OR RUN VTAB

APPENDIX C. DOS RESERVED WORDS

APPEND
BLOAD
BRUN
BSAVE

CHAIN
CLOSE
DELETE
EXEC

INIT
LOAD
LOCK
OPEN

POSITION SA VE
READ UNLOCK
RENAME VERIFY
RUN WRITE

Appendix D 287

Appendix D. APPLESOFT BASIC ERROR MESSAGES

When an error occurs in Applesoft BASIC, an error message will
appear, and the program will return to the command level (i.e.
the] prompt will appear). The error message will be displayed
using the following configuration:

? name ERROR IN line

where name indicates the error name and line denotes the line
number where the error occured. If the error occurred in the
immediate mode, line will be omitted.

The program listing in memory is not affected by an error nor are
the stored variable values. However, all GOSUB and FOR loop
counters are reset to 0.

'~Vl f'l::l 1 -dl I '\!"l(lJ1 -tJtre,, -vt.'\:Ul '~t-i rt •t:n1Jf -,, "\..vlrt: · wll 1 'ut: ·slurt:!U ' 111

memory address 222. By PEE King this address, the error code can
be determined.

The various Applesoft errors are discussed in the following table.

Error Message Error Error Description
Code

?BAD SECTOR 107 The program referenced an array
ERROR element with a subscript not

defined in a DIM statement.

?CAN'T CONTINUE None This error occurs when the program
ERROR attempted one of the following:

• Execution of CONT when a
program was not present in RAM.

• Execution of CONT after the
occurrence of a program error.

• Execution of CONT after the
program had been edited.

?DIVISION BY 133 Division by zero is not allowed.
ZERO ERROR

288 Apple lie Users Handbook

Error Message
Error

Error Description
Code

?FORMULA TOO 191 This error indicated that a string
COMPLEX ERROR expression was used that was too

complex for Applesoft BASIC to
comprehend. The expression should
be broken into 2 or more parts.

?ILLEGAL DIRECT None A statement was used in the imme-
ERROR diate mode which is only allowed

in the program mode (ex. INPUT,
GET, DEF FN).

?ILLEGAL 53 A value was used with a math or
QUANTITY ERROR string function that was out of

range.

?NEXT WITHOUT 0 This error will be generated when a
FOR ERROR NEXT statement is encountered

without a corresponding FOR state-
ment. This error is often the result
of different variables being used
with FOR and NEXT.

?OUT OF DATA 42 A READ statement was executed
ERROR which contained variables for which

DAT A statement values were not
available.

?OUT OF MEMORY 77 This error can be the result of any
ERROR of the following :

• LOMEM: set too high.
• HIMEM : set too low.
• Use of a program that was too

large for available memory.
• Use of excessive nesting of FOR,

NEXT loops, GOSUBS, or paren-
theses.

• Use of an overly complicated
expression.

• Use of too many variables.

Appendix D 289

Error Message
Error

Error Description
Code

?REDIM'D ARRAY 120 A second DIM statement for an
ERROR array was encountered after that

array had already been dimen-
sioned. This error usually occurs
when an array had been previously
dimensioned by default and a DIM
statement was subsequently exe-
cuted for the same array variable.

?RETURN 22 A RETURN statement was executed
WITHOUT GOSUB which did not have a correspon-
ERROR ding GOSUB statement.

?STRING TOO 176 A statement attempted to conca-
LONG ERROR tenate two or more strings with a

resultant string in excess of 255
characters.

?SYNTAX ERROR 16 The statement used an incorrect
spelling, incorrect punctuation,
illegal character, etc.

?TYPE MISMATCH 163 A numeric value was indicated
ERROR where a string value should have

been used or vice versa.

?UNDEF'D 224 A user-defined function was refer-
FUNCTION ERROR enced which has not been defined

using DEF FN.

?UNDEF'D 90 An attempt was made to branch to
ST A TEMENT ERROR a line number that did not exist.

290 Apple lie Users Handbook

APPENDIX E. INTEGER BASIC ERROR MESSAGES

Error Message

***BAD BRANCH
ERR

\

***BAD NEXT ERR

***BAD RETURN
ERR

***DIM ERR

***MEM FULL ERR

***NO END ERR

***RANGE ERR

RETYPE LINE

***STRING ERR

Error Description

The statement attempted to branch to a
line number which does not exist.

A NEXT statement was executed without a
corresponding FOR.

A RETURN statement was executed with­
out a corresponding GOSUB statement.

An attempt was made to dimension an
array that had previously been dimen­
sioned.

An insufficient amount of memory is
available.

An END statement should be included as
the last program line in Integer BASIC
programs.

This error is generated when an array
variable is used with an· illegal subscript
(i.e. a subscript larger than that for which
the array was DIM'ed). This error is also
generated when an illegal argument is
used in HUN, VLIN, PLOT, TAB, or VTAB.

This message is displayed when an illegal
entry was made in response to an INPUT
statement.

This message can be generated by almost
any illegal string operation.

***STR OVFL
ERROR

Appendix E 291

An attempt was made to assign a string a
greater number of characters than it had
been dimensioned for.

***SYNTAX ERROR The statement used an incorrect spelling,
incorrect punctuation, illegal character
etc.

***TOO LONG
ERROR

This error occurs when over 128 characters
are included on a single statement line or
when over 12 parentheses have been
nested.

292 Apple lie Users Handbook

APPENDIX F. DOS ERROR MESSAGES

When a DOS error is encountered in the context of an Applesoft
program, the corresponding DOS error code will be placed in
memory address 222. The error code can be determined by
executing PRINT PEEK(222).

Error Message
Error

Error Description
Code

DISK FULL 9 This error occurs when a new file
or new data is to be written to a
disk on which insufficient space is
available to store the new informa-
ti on.

END OF DATA 5 This error is generated when a
READ statement tries to read be-
yond the end of a text file.

FILE LOCKED 10 The program attempted to execute
a WRITE, DELETE, RENAME, SA VE,
or BSA VE statement with a locked
file.

FILE NOT FOUND 6 A file is refrenced which does not
exist on the diskette. This error
condition usually occurs as the
result of using an incorrect file-
name.

FILE TYPE 13 An incorrect file type was used
MISMATCH with a DOS command.

• BLOAD, BSAVE, and BRUN can
only be used with binary files.

• CHAIN can only be used with
Integer BASIC program files.

• LOAD, RUN, and SAVE can only
be used with program files .

• PEN, READ, WRITE, APPEND,
EXEC, and POSITION can only
be used with text files.

Error Message

1/0 ERROR

LANGUAGE NOT
AVAILABLE

NO BUFFERS
AVAILABLE

NOT DIRECT
COMMAND

PROGRAM TOO
LARGE

RANGE ERROR

Error
Code

8

Appendix F 293

Error Description

A disk access operation was un­
successful. This error is generally
caused by one of the following:
• Drive door open.
• Diskette not inserted in drive.
• Diskette not initialized.
• Defective diskette.

1 The operator attempted to access
Integer or Applesoft BASIC when
that language was not available.
This error is also generated by
attempting to load or run a program
when the program's language was
not available.

12 All available file buffers are in
use.

15 The following DOS commands
cannot be executed in the imme­
diate mode, and can only be
executed within a program:
•APPEND
•POSITION
•OPEN
•READ
•WRITE

14 A DOS command tried to load a
program file from the diskette into
RAM when insufficient memory
was available for the program file.

2 or 3 An illegal parameter was specified
with a DOS parameter. This error is
generally due to an incorrect drive,
slot, or volume specification.

294 Apple lie Users Handbook

Error Message
Error

Error Description
Code

SYNTAX ERROR 11 A filename or parameter was mis-
spelled or incorrect punctuation
was used.

VOLUME 7 The volume parameter specified
MISMATCH differs from the volume number of

the diskette being accessed.

WRITE PROTECTED 4 DOS attempted to access a write
protected diskette via one of the
following commands:
•SAVE
• BSAVE
•WRITE

Appendix G 295

APPENDIX G. ASCII CHARACTER SET

Dec. Hex
Character Value Value Keystroke

NUL 0 00 Ctrl-@
SOH 1 01 Ctrl-A
STX 2 02 Ctrl-B
ETX 3 03 Ctrl-C
EOT 4 04 Ctrl-D
ENQ 5 05 Ctrl-E
ACK 6 06 Ctrl-F
BEL 7 07 Ctrl-G
BS 8 08 Ctrl-H
HT 9 09 Ctrl-1
LF 10 OA Ctrl-J
VT 11 OB Ctrl-K
FF 12 oc Ctrl-L
R 13 OD Ctrl-M
so 14 OE Ctrl -N

' SI 15 OF Ctrl-0
DLE 16 10 Ctrl-P
DC1 17 11 Ctrl-Q
DC2 18 12 Ctrl-R
DC3 19 13 Ctrl-S
DC4 20 14 Ctrl-T
NAK 21 15 Ctrl-U
SYN 22 16 Ctrl-V
ETB 23 17 Ctrl-W
CAN 24 18 Ctrl-X
EM 25 19 Ctrl-Y
SUB 26 1A Ctrl-Z
ESC 27 1B ESC
FS 28 1C Ctrl-\
GS 29 1D Ctrl-]
RS 30 1E
us 31 1F Ctr I-Shift--

This appendix lists ASCII codes 0 through 127. ASCII codes 128
through 255 repeat codes 0 through 127.

296 Apple lie Users Handbook

Dec. Hex
Character Value Value Keystroke

SP 32 20 Space Bar
! 33 21 Shift-1
II 34 22 Shift-'
35 23 Shift-3
$ 36 24 Shift-4
% 37 25 Shift-5
& 38 26 Shift-7
' 39 27
(40 28 Shift-9
) 41 29 Shift-0
* 42 2A Shift-8
+ 43 28 Shift-=

' 44 2C
' - 45 20 -

46 2E
I 47 2F I
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

58 3A Shift-;

' 59 38 '
< 60 3C Shift-,
= 61 30 =
> 62 3E Shift-.
? 63 3F Shift-/

Appendix G 297

Dec. Hex
Character Value Value Keystroke

@ 64 40 Shift-2
A 6S 41 Shift-A
B 66 42 Shift-B
c 67 43 Shift-C
D 68 44 Shift-D
E 69 4S Shift-E
F 70 46 Shift-F
G 71 47 Shift-G
H 72 48 Shift-H
I 73 49 Shift-I
J 74 4A Shift-J
K 7S 4B Shift-K
L 76 4C Shift-L
M 77 40 Shift-M
N 78 4E Shift-N
0 79 4F Shift-0
p 80 so Shift-P
Q 81 S1 Shift-Q
R 82 S2 Shift-R
s 83 S3 Shift-S
T 84 S4 Shift-T
u 8S SS Shift-U
v 86 S6 Shift-V
w 87 S7 Shift-W
x 88 S8 Shift-X
y 89 S9 Shift-Y
z 90 SA Shift-Z
[91 SB [
\ 92 SC \
l 93 SD l
A 94 SE Shift-6
- 9S SF Shift- -

298 Apple lie Users Handbook

Dec. Hex
Character Value Value Keystroke

' 96 60 '
a 97 61 A
b 98 62

I

B
c 99 63 c
d 100 64 D
e 101 65 E
f 102 66 F
g 103 67 G
h 104 68 H
i 105 69 I
j 106 6A J
k 107 6B K
I 108 6C L
m 109 60 M
n 110 6E N
0 111 6F 0
p 112 70 p

q 113 71 Q
r 114 72 R
s 115 73 s
t 116 74 T
u 117 75 u
v 118 76 v
w 119 77 w
x 120 78 x
y 121 79 y

z 122 7A z
{ 123 7B Shift-[

I 124 7C Shift-\
t 125 70 Sh ift-]
- 126 7E Shift-
::::: 127 7F Delete

Appendix H 299

APPENDIX H. APPLE lie PRINTER USAGE

INTRODUCTION

The Apple lie outputs data to the printer just as it does to the
screen. To send data to the printer, a PR# statement specifying
the printer card's slot number must be executed to cause data to
be output to the printer rather than to the screen. A second PR#
statement must be executed if data is to subsequently be sent to
the screen rather than the printer.

Either a parallel or serial printer can be used with the lie using a
parallel or serial interface card respectively. Generally, the printer
card is placed in either slot 1 or 2.

Printer Control Codes

Generally, printer output can be modified through the use of
control codes. These codes are generally output to the printer via
the PRINT statement. Printer control codes can be used to change
the page length, line length, character size, character set, as well as a
number of other features.

In the example at the end of this section, the form feed character is
sent to the printer in line 170 and the character indicating
condensed characters is sent in line 190.

Notice that the CHR$ function is used to send the printer control
, characters. Since, CHR$ is not available in Integer BASIC, the printer

control codes must be output in some other manner. This is
generally accomplished by keying in the control code character
within a pair of quotation marks. Generally, the control code is
non-printing, so the keystrokes will not be echoed on the screen.

If our example program was written in Integer BASIC, lines 170, 190
and 195 would be modified as follows to send the form feed
character, output condensed characters, and turn off the con­
densed character mode.

300 Apple lie Users Handbook

170 PRINT""

~---------- Press Ctrl-L
....----------- Press Ctrl-0

190 PRINT""; "THIS IS AN EXAMPLE OF
CONDENSED CHARACTER PRINTING"

195 PRINT""

----------- Press Ctrl-R

Sending Program Listing to the Printer

The LIST statement causes program listings to be sent to the screen.
However, these can alternatively be sent to the printer by preceding
LIST with a PR# command.

Example Program

50 REM THIS EXAMPLE UTILIZED AN EPSON PRINTER
100 REM THIS EXAMPLE MA~Y NOT WORK IF YOUR ARE

USING A DIFFERENT PRINTER
110 REM DISPLAY DATA ON THE SCREEN
120 PRINT "THIS IS AN EXAMPLE OF SCREEN OUTPUT"
130 REM OUTPUT DATA VIA PRINTER AS

NORMAL CHARACTERS
140 PR# 1
150 PRINT "THIS IS AN EXAMPLE OF PRINTER OUTPUT"
160 REM SEND FORM FEED CHARACTER (FF) TO PRINTER
170 PRINT CHR$ (12)
180 REM SEND CONDENSED CHARACTER CODE (SI) TO PRI
190 PRINT CHR$ (15); "THIS IS AN EXAMPLE OF CONDENSED

CHARACTER PRINTING"
195 PRINT CHR$ (18)
200 REM SEND OUTPUT TO SCREEN
210 PR# 0
220 PRINT "DATA IS AGAIN OUTPUT TO THE SCREEN"
230 END

Appendix I 301

Appendix I. Machine Language Subroutines

The Apple lle's operating system has been written as a series of
subroutines. These subroutines can easily be used in the user's
own programs. In order to use these subroutines, load the 6502's
registers with any necessary data. Then execute a jump to
subroutine (JSR) to the subroutine's starting address.

Although the starting addresses and functions of the monitor
subroutines are identical in the Apple II+ and Apple lie, the
routines themselves are not. For this reason, if a program is to be
compatible with both machines, it must only call monitor
subroutines at their starting address.

The descriptions of the subroutines will be as follows.

NAME (address)
description

A = 00 X = 00 Y = 00

The values of the 6502's accumulator (A) , X-register (X) , and
Y-register (Y) after the execution of the routine are given on the
same line as the name and starting address. A "??" indicates that
the register's contents have been scrambled. A"--" indicates that
the subroutine has not changed the contents of that register.
Hex values shall be indicated with a prefix of"$".

BELL ($FF3A/65338) A= $87 X = -- Y = --

BELL writes the CONTROL-G (bell) character to the current
output device.

BELL 1 ($FBDD/64477) A = ?? X = ?? Y = --

BELL 1generatesa1000 Hz tone with a duration of 0.1 seconds on
the console speaker.

302 Apple lie Users Handbook

CLREOL ($FC9C/ 64668) A=?? X = -- Y = ??

CLREOL clears the text line in which the cursor resides, from the
cursor position to the end of line.

CLREOP ($FC42/64578) A=?? X = -- Y = ??

CLREOP clears the text window from the current cursor position
to the bottom of the screen.

COUT ($FDED/65005) A=?? X =?? Y =??

COUT calls the character output subroutine. The character
output subroutine (usually COUT1) must have its starting ad­
dress in locations ($36-$37). The character to be output should be
in the accumulator.

COUT1 ($FDF0/65008) A = ?? X = ?? Y = ??

COUT1 displays the character to be output (accumulator) on the
screen. The character will be displayed at the current cursor
position. Afterwards, the cursor position will be advanced.
COUT1 takes care of control characters, return, linefeed, and
bell .

CROUT ($FD8E/64910) A= -- X = -- Y = --

CROUT outputs a carriage return ($00) to the current output
device.

GETLN ($FD6A/64874) A= -- X =length of line Y = -­

GETLN accepts an entire string of characters, storing them in the
input buffer ($200). The prompting character should be stored in
location $33. The X-register will contain the length of the string
upon return from the subroutine.

GETLNZ ($FD67 /64871) A= -- X = length of input Y = -­

GETLNZ sends a carriage return to the output device, and then
calls GETLN.

Appendix I 303

GETLN1 ($FD6F/ 64879) A= -- X =length of input Y = -­

GETLN1 is the same as GETLN, except that no prompt is
displayed. If the input line is cancelled, either because of too
many backspaces or a CONTROL-X, then GETLN wi ll be exe­
cuted using the prompt in location $33.

HOME ($FC58/ 64600) A = - - X = - - Y = --

HOME clears the screen and positions the cursor in the upper
left corner of the screen.

IOREST ($FF3F/ 65343) A=?? X = ?? Y = ??

IOREST restores the 6502's internal registers to the values stored
in locations $45 to $49.

IOSAVE (FF4A/ 64354) A=?? X =?? Y =--

IOSAVE stores the contents of the 6502's registers into locations
$45 through $49.

KEVIN ($FD1B/ 64795) A = inputted key X = -- Y = --

KEYi N pauses for a keypress and then stores the key in the
accumulator. KEVIN also randomizes the random number seed
at locations $4E and $4F.

MOVE ($FE2C/ 65048) A =?? X = -- Y = --

MOVE is identical to the monitor's move subroutine. MOVE gets
its argument from :

• $42-$43
• $3C-$3D
• $3E-$3F

destination address
starting source address
ending source address

PRBL2 ($F94A/ 63818) A = -- X = ?? Y = --

PRBL2 outputs from 1to256 blanks to the current output device.
The X- register should be loaded with the number of blanks to

304 Apple lie Users Handbook

output before executing this subroutine. X = 00 corresponds to
256 blanks.

PRBYTE ($FDDA/64986) A = ?? X = -- Y = --

PRBYTE outputs the hexadecimal value stored in the accumula­
tor to the current output device.

PREAD (FB1 E/64286) A =?? X = -- Y =value of controller

PREAD reads the hand control specified in the X-register (0-3). It
then returns that value in the Y-register.

PRHEX ($FDE3/64995) A=?? X = -- Y = --

PRHEX outputs the lower nibble of the accumulator, one hex
digit, to the current output device.

PRNTAX ($F941/63809) A=?? X = -- Y = --

PRNTAX outputs a four digit hex number. The upper two digits
must be stored in the accumulator. The lower two digits must be
stored in the X-register.

RDCHAR ($FD35/64821) A=?? X = ?? Y = ??

RDCHAR is another input subroutine that retrieves characters
from the standard input subroutine. RDCHAR also interprets
ESCAPE codes.

RDKEY ($FDOC/64780) A =character X = -- Y = --

RD KEY calls the input subroutine. The input subroutine's
starting address must be stored in locations $38-$39. This routine
is usually KEVIN.

READ ($FEFD/65277) A=?? X = ?? Y = ??

READ converts a series of tones into digital data and then stores
this data. The following locations must contain pointers before

Appendix I 305

calling the subroutine.

• $3C-$3D first byte to store data in.
• $3E-$3F last byte to store data in.

READ also computes and verifies the checksum. The checksum is
calclated with a running exclusive-OR.

SETINV ($FE80/65152) A= -- X = -- Y = $3F

SETI NV sets the display format of all successive characters to
inverse video.

SETNORM ($FE84/65156) A= -- X = -- Y =$FF

SETNORM sets the display format of all successive characters to
normal.

VERIFY ($FE36/65078) A=?? X =?? Y = ??

VERIFY is identical in operation to the monitor's verify com­
mand. Before execution of this command, certain pointers must
be set up.

• $42-$43 destination address
• $3C-$3D starting address
• $3E-$3F ending source address

WAIT ($FCA8/64680) A= 00 X = -- Y = --

WAIT causes a delay of a specific amount of time. The length of
this delay must be loaded into the accumulator. The delay time is
calculated using the following formula.

Delay = Vi(26 + 27 A + SA2) microseconds

WRITE ($FECD/65229) A=?? X = ?? Y = ??

WRITE converts digital data into a series of tones for the cassette.
Two pointers must be set u'iJ'before calling WRITE.

• $3C-$3D address of first data byte
• $3E-$3F address of last data byte

306 Apple lie Users Handbook

This subroutine also writes a ten second leader and computes a
checksum.

Monitor Subroutines -- Graphics

The monitor contains subroutines that can be used to manipu­
late the graphics display.

CLRSCR (($F832/63538) A=?? X = -- Y = ??

CLRSCR clears all 48 lines of the low resolution graphics screen
to black.

CLRTOP ($F836/63542) A=?? X = -- Y = ??

CLRTOP clears the low resolution graphics display. However,
CLRTOP only clears the top 40 lines.

HLINE ($F819/63513) A=?? X = -- Y = ??

HLINE plots a horizontal string of pixels of the color set by
SETCOL or NEXTCOL. HLINE is used only with a low resolution
display. Prior to calling HLINE, the accumulator must be loaded
with the vertical coordinate; the Y-register must be loaded with
the leftmost horizontal coordinate; and memory location $2C
must be loaded with the rightmost horizontal coordinate.

NEXTCOL ($F85F/63583) A= -- X = -- Y = -­

NEXTCOL adds 3 to the current low resolution color.

PLOT ($F800/63488) A = ? ? X = -- Y = --

PLOT sets a certain pixel of the low resolution screen to the color
last selected by SETCOL or NEXTCOL. The vertical position is
loaded into the accumulator. The horizonal position is loaded in
the Y-register.

Appendix I 307

SCRN ($F871/63601) A= color of block X = -- Y = - -

SCRN reads the color value at a specific location on the low
resolution graphics screen. SCRN places this value into the
accumulator. The accumulator shold be loaded with the hori­
zontal position. The Y-register should be loaded with the vertical
position .

SETCOL ($F864/63588) A = -- X = -- Y = - -

SETCOL sets the current low resolution color to the value in the
accumulator. The colors and their corresponding values are
listed in Table 6-1.

VLINE ($F828/63528) A = ?? X = -- Y = --

VLI NE plots a vertical string of pixels of the color set by SETCOL
or NEXTCOL. VLINE is used with the low resolution display. Prior
to calling VLINE, the accumulator must be loaded with the top
vertical coordinate; the memory location $20 must be loaded
with the bottom vertical coordinate; and the Y-register must be
loaded with the horizontal coordinate.

WSI ($F3F2/62450) A=?? X = ?? Y = ??

WSI clears the currently used high resolution screen. WSI clears
all 192 lines whether or not a text window is being used.

WSl1 ($F3FA/62454) A=?? X = ?? Y = ??

WSl1 sets the currently used high resolution screen to the most
recently plotted color. The subroutine will not work from BASIC
unless preceded by a plot.

308 Apple lie User Handbook

APPENDIX J. PROGRAMS ON THE SYSTEM MASTER DISKITTE

Program Name

HELLO

APPLESOFT

BOOT13

CHAIN

CONVERT13

COPY

COPY-OB JO

COPY A

FID

FILEM

FPBASIC

Purpose

An Applesoft greetings program which is
automatically run by DOS.

An Integer BASIC greetings program
which is automatically run by DOS if
Applesoft is unavailable.

A binary program which allows the usage
of 13 sector diskettes.

A binary program that allows one Apple­
soft BASIC program to be loaded and
run from within another Applesoft BASIC
program file.

An Applesoft BASIC program that runs
MUFFIN, which in turn converts 13-
sector diskettes to 16-sector diskettes.

Used in Integer BASIC to copy diskettes.

A machine language subroutine called
by COPY and COPY A.

Used in Applesoft BASIC to copy disk­
ettes.

Used by FILEM.

Applesoft program which allows the user
to perform a number of DOS functions
via a main menu.

Binary disk file of Applesoft BASIC.

INTBASIC

LOADER.OBJ

MASTER

MASTER.CREA T

MUFFIN

RENUMBER

SLOT#

START13

Appendix J 309

Binary disk file of Integer BASIC.

Loads Integer BASIC into RAM.

Applesoft program which runs the
binary program MASTER.CREA TE.

Used to create system independent disk­
ettes.

Binary program used to convert diskettes
from 13-sector to 16-sector format.

Applesoft program used to merge two
program files or renumber a program 's
lines.

Applesoft program which identifies the
defaults for slot and drive number.

Applesoft program which runs BOOT13

INDEX

ABS 82
Absolute Value 82
Accumulator 267
Alternative Character Set 20
AND 59-61 ,82-84
APPEND 218-219
Apple Computer Inc 11
Apple BO-Column Board 273-283
Apple 1111
Apple lie 11 , 13
Apple lie , cassette input jack 22
Apple lie, cassette output jack 22
Apple lie, cassette recorder 169-170
Apple lie, controller cards 24-25
Apple lie, disk drive 169-224
Apple lie, power supply 17
Apple lie, rear panel 15
Apple lie, speaker 17-18
Apple lie, system 12
Apple lie, video display 18-22
Apple Writer 28
Applesoft BASIC 11 , 14, 27, 39, 169
Applesoft BASIC, error messages

287-289
Applesoft BASIC, prompt 32, 39, 188
Applesoft BASIC, switch to Integer

188
Applesoft BASIC, tokens 285
Applications Programs 27-28
Arithmetic Expressions 54, 57
Arithmetic Operators 56
Arrays 52, 95-96, 171
ASC 72, 78, 84
ASCII Code 84, 87, 295-298
Assembler 26-27
Assembly Language 27
Assignment State ments 62, 120
ATN 84-85
AUTO 72-73, 85-86, 124
Autostart Boot 185
Auxiliary Expansion Slot 273
Auxiliary Slot 14

B Parameter 224
BASIC 273
BASIC Diskette 181
BASIC, Applesoft 11 , 14, 27, 39, 169
BASIC, functions 75
BASIC, Integer 11 , 27
BASICS Diskette 181
Bits 16
BLOAD 210-21 , 260,270
Boolean Expression 52, 82
Boolean Operators 56, 59-61
Branching Statement 72
BRUN 211
BSA VE 210, 243-244, 266, 270
Byte Parameter 224
Bytes 16

CALL 86-87
Caps Lock Key 34, 36
Carriage Return Character 222
Carriage Return/ Line Feed 66
Cassette Recorder 22-23, 169-171
Cassette Recorder, input jack 22
Cassette Recorder, interface 22
Cassette Recorder, output jack 22
Cassette, LOAD 171
Cassette, installation 169
Cassette, operation 169-170
Cassette, SAVE 170
CATALOG 194-196
CBASIC 40
Character Set 20
Character Set, alternative 20
Character set, primary 20
Charts 228
Checksum 205
CHR$ 77, 87, 93, 211 , 299
CLEAR 88
Clearing the Display 278-279
CLOSE 218, 223
CLR 88-89
Coefficient 49

312 Apple lie Users Handbook

COLOR 89-90, 134-135, 226-227
Colors 89, 108, 227
Colors, graphics 21
Compiled Code 26
Compiled Languages 40
Compiler 26
Compound Expression 55
Compuserve 25
CON 79, 90-91
Concatenation 76
Conditional Statement 71-72
Constants 50
CONT 79, 91, 95, 157-158
Control Codes 279-280
Control-C 79
Controller Cards 24
COS92
Counter 101-103
CP/ M 14, 25-26, 181 , 273
CPU 11
Ctrl-D 211
Ctrl-K 279
Ctrl-L 278
Ctrl-P, monitor 261-263, 270
Ctrl-Q 276-277
Ctrl-R 276-277
Ctrl-V 279
Ctrl-W 279
Ctrl-Y, monitor 268-269, 271
Ctrl-Z 279
Ctrl-] 279
Cursor Control 277-278
Cursor Control Keys 35

DATA 63-64, 92-93, 140-141 , 144-145
Data Types 46
Debugging 98-99
DEF FN 93-94
DEL 94-95
DELETE 203
DELETE key 34
Delimiter 63
Density 178
DIM 53-54, 95-98, 142
Dimensions 53-54
Direct Access 214
Directory 194-195
Disk Controller Card 181

Disk Drive 169-224
Disk 1111, 23
Disk II System 181 -182
Disk II System, installation 181 ,

183-185
Disk Operating Systems 181
Diskette 171 , 173-174, 199-202
Diskette, Catalog 194-195
Diskette, Directory 194-195
Diskette, double-density 178
Diskette, double-sided 178
Diskette, handling rules 179-180
Diskette, index hole 177
Diskette, initialization 197-198
Diskette, inserting 180
Diskette, master 199-202
Diskette, quad density 178
Diskette, removing 180
Diskette, single-density 178
Diskette, single-sided 178
Diskette, slave 199-202
Diskette, slot number 191-192
Diskette, volume number 192-194
Diskette, write protection 178
Diskette, 13 sectors 187-188
Display 11
Display Line 43
Display Screen, formatting 65
DOS 26, 151 , 169, 175
DOS 3.3 11 , 181
DOS Commands 189-220
DOS, autostart boot 185
DOS, booting 185-187
DOS, DELETE 203
DOS, drive specification 190-191
DOS, Error Messages 292-294
DOS, filenames 190
DOS, LOAD 202
DOS, LOCK 204
DOS, monitor boot 186-187
DOS, RENAME 203
DOS, reserved words 286
DOS, restoring 187
DOS, SAVE 202
DOS, slot specification 191
DOS, VERIFY 204-205
Double-Density Diskettes 178
Dow Jones News & Quotes 25

Down-Arrow 36
DRAW 97-98, 108, 235, 244-245
Drive Specification 190
DSP 98
Dynamic RAM 17

Editing 45, 46
END 42, 79 99
Error Codes 130
Error Message 45, 130, 189
Error Messages, Applesoft BASIC

287-289
Error Messages, DOS 292-294
Error Messages, Integer BASIC

290-291
ESC 4 277
ESC 8 277
ESC Key 36
EXEC 208-210
EXEC File 208-120
Executing a Program 43
EXP 100
Expansion Slots 13-14
Exponent 49
Exponentiation 57
Expressions 54-56
Expressions, compound 55
Expressions, simple 55

File Pointer 219
File Type 196
File, locked 196
File, size 196
File, unlocked 196
Filenames 190
Files, data storage 221-222
FLASH 100-101, 126, 281-282
Flashing Format 20
Floating Decimal Point 47
Floating Point 27
Floating Point Language 39
Floppy Diskettes 171, 173
FOR 69-71 , 101-102, 138
FORTRAN 27
FP 188
FRE 103
Functions 75-76

Game Controllers 133
Game 1/0 Connector 24
Game Paddles 24
GET 69, 104
GO 255
GO, monitor 267

Index 313

GOSUB 72-75, 105-106, 128, 136-138,
146

GOTO 106, 128-129, 136-137
GR 107, 225-226
Graphics 225
Graphics Mode, high resolution

20-21
Graphics Mode, low resolution 20-21
Graphics Modes 225
Graphics, colors 21 , 89, 108
Graphics, full screen 226
Graphics, high resolution 97-98,

108-110, 113, 166-168, 232-234
Graphics, low resolution 107, 111,

152-154, 225-228
Graphics, shape 97-98, 149, 151-152,

235-244
Graphics, with text 226-227
Greeting Program 197-198

Hard Disks 171-172
Hard Sectoring 176-177
HCOLOR 107-108, 112-113, 233
HGR 108-109, 232-233
HGR2 109-110
High Resolution Graphics 20-21,

97-98, 108-110, 113, 166-168,
232-234

Housekeeping 103
HIMEM 110-111, 123
HLIN 89, 107, 111, 227-228
HOME 112, 281-282
HPLOT 108, 112-113, 234
HTAB 113-114, 139, 281

IF 71-72, 82, 114-115
Immediate Mode 40, 41
IN# 115-116, 186
Index Hole 176
Index Variables 70
INIT 197-199

314 Apple lie Users Handbook

Initializing, diskettes 197-198
INPUT 67-68, 117-118
INPUT prompt 67-68
Installation 29
INT 116, 188
Integer 48
Integer BASIC 11, 27, 39, 169
Integer BASIC, error messages

290-291
Integer BASIC, prompt 39, 118
Integer BASIC, reserved words 286
Integer BASIC, switch to Applesoft

188
Interpreters 26-27
Interpreted Languages 40
INVERSE 116-117, 126, 281-282
Inverse Command, monitor 261-263,

270
Inverse Format 20
Inverse Video 116-117
IOU Circuit 14

JMP 264-268
Jobs, Stephen 11
Joystick 24
JSR 263, 267

Keyboard 11
Keyword 44

Language Translators 26
LEFT$ 76, 118-119
LEN 119
LET 62, 120
Line Numbers 41, 85-86
Links 196-197
LIST 44-45, 120-121
List Command, monitor 265-266
Listing a Program 44
LOAD 121-122, 202
LOAD, cassette 171
LOCK 204
Locked File 195
LOG 122
Logical Operators 59-61
Logo 27
LOMEM 110, 123-124
Loop 70-71, 101-106

Low Resolution Graphics 20-21, 107,
111, 152-154, 225-228

Machine Language 249
Machine Language Programs 263
Machine Language Subroutine 86-87

110
Main Board 13
MAN 86, 124
Mantissa 49
MAXFILES 207-208
Master Diskette 199-202
Memory Change, monitor 269
Memory Dump, monitor 252~253
Memory Examine, monitor 251-252
Memory Examine, monitor 269
MID$ 76, 123-125
Mini-Assembler 263-264
Mini-Assembler, activating 264
Mini-Assembler, program entry

264-265
Mini-Assembler, return to monitor

265
Mini-floppy Diskettes 174
Mixed Modes 22
MMU Circuit 14
Mneumonic 263-264
Modem 25
MON 205-206
Monitor 18-19, 169, 205-206, 249-271
Monitor DOS boot 186-187
Monitor, Ctrl-P 261-263, 270
Monitor, Ctrl-Y 268-269, 271
Monitor, GO 255,267
Monitor, activating 249-250
Monitor, address values 251
Monitor, changing memory 253-255
Monitor, command characters 251
Monitor, commands 251
Monitor, custom command 268-269
Monitor, data values 251
Monitor, deactivating 249-250
Monitor, inverse commancf\261, 270
Monitor, list command 265-266
Monitor, memory change 269
Monitor, memory dump 252-253
Monitor, memory examine 251-252,

269

Monitor, normal command 261 , 270
Monitor, read command 259
Monitor, register examine 253, 269
Monitor, subroutines 301-307
Monitor, verify 256-259, 261
Monitor, write command 259
Move Command, monitor 255-256,

270
Muffin 187-188
Multiple Statement Program lines

43, 44

Nested Loop 71, 102
Nesting 102
NEW 42, 125-126
NEXT 69-71 , 101-102, 138
NO END Error 99
NO TRACE 127
NOMON 205-206
NORMAL 126
Normal Command, monitor 261-263,

270
Normal Format 20
NOT 59-61, 126-127
Null Command 216
Numeric Data 46-47

ON 128-129, 136-138, 146
ON, GOSUB 75, 128-129
ON, GOTO 73, 128-129
ONERR 129, 131, 145
OPEN 214,219-220,223
Open Apple Function Key 34, 36
Operands 55
Operating System 26
Operator 55-56
OR 59-61 , 131-132

Paddles 133
Page-Zero 254
Parentheses 55-56
Parallel Communications 24
Parallel Interface Card 23-24
PASCAL 27, 181, 273
PDL 133
PEEK 78,133-1 34
PFS 28
PILOT 27

Pixel 225
Plan 80 28
PLOT 89, 107, 134 ,227
POKE 78, 135-136
POP 136
POS 138-139
POSITION 219-220
Power Supply 17
PR# 66, 140, 186, 299-301
Primary Character Set 20
PRINT 65, 77, 139-140, 156
PRINT, commas 65
PRINT, semicolon 66
Printer 23-24
Printer 298-299
Program Debugging 98-99
Program Execution 43
Program Lines 43
Program Mode 40, 41
Prompt 67-68,188

Quad-Density Diskettes 178
Quick File II 2

RAM 11, 13-14
RAM 16
RAM, dynamic 17
RAM, static 17

Index 315

Random File Access 212-214
Random File, CLOSE 223
Random File, OPEN 223
Random File, READ 223
Random File, WRITE 223
Random Numbers 147-148
READ 63-64, 92-93, 140-141, 145,

216-218,219-220, 223,224
Read Command, monitor 259
Read/ Write Head 176
RECALL 141-143, 158, 171
Record Length 212
Register Examine, monito r 253, 269
Relational Expression 54
Relational Operators 56, 58
REM 144
Remark Statements 62
RENAME 203
Reserved Word 44, 285-286
Reset Key 37, 80

316 Apple lie User Handbook

RESTORE 64, 140, 144
RESUME 130-131, 145-146
RETURN 34, 36, 74, 128, 105-106, 146
Reverse Video 116-117
RF Modulator 18-19
RIGHT$ 141-147
RIGHT$ 76
RND 147-148
ROM 11, 13 16
ROT 149, 235, 244
RTS 267
RUN 150
Run-Time Monitor 26

s 192
SAVE 150-151, 202-203
SAVE, cassette 170
SCALE= 149, 151-152, 235, 244
Scientific Notation 49-50
SCRN 152-154, 228
Scrolling 279
Sectors 174-177
Self-Test 31
Sequential File 212-222
Sequential 212-213
Sequential File, CLOSE 218
Sequential File, OPEN 214
Sequentila File, READ 216-218
Sequential File, WRITE 215-216
Serial Communications 24
Serial Interface Card 23-24
Shape 149, 151-152
Shape Table 155,235-247
Shape Table, directory 240
Shape Table, programming 246-247
Shape Table, saving 243
Shift 35
SH LOAD 155, 235, 243-244
Simple Expressions 55
Single-Density Diskette 178
SIN 155
Slave Diskette 199-202
Slot 191-192
Slot Specification 191
Soft Sectoring 175-177
Soft Switch 17-18
Software 25-27
Solid Apple Function Key 34, 36

Source Code 26
Space Bar 35
SPC 156
Speaker 17-18
Special Character Keys 34
SPEED 156
SQR 75-76, 157
Statement 43
Static RAM 17
STEP 70, 101-102
STOP 80, 157-158
STORE 141-143, 158, 171
STR$ 158-159
String Variables 51-52
Strings 46, 95-96
Subroutines 73-75
Subscript 53
Subscripted Variables 53
Super Serial Card 25
Switch Box 18
Syntax, DOS 194
System Master Diskette 11, 181
System Monitor 249-271
TAB 139, 159-160
Tab Key 34, 36
Tab Stops 65
Tabbing 281
Tables 52
TAN 85, 161
TEXT 107, 161
Text Data 46
Text File 212
Text Mode 225
Text Mode, 40 column 20
Text Mode, 80 column 20
The Source 25
THEN 71-72, 82, 114-115
Tokens 285
TRACE 127
TRACE 161-162
Track/ Sector List 196-197
Tracks 174-175
Troubleshooting 29
Truncated 52
TV Set 18-19

Unary Operators 57
Unlocked File 195

Up-Arrow 36
Uppercase-RestriCt Mode 282
USR 162

v 193
VAL 104, 163
Variable Name 51-52
Variables 50-52
Variables, subscripted 53
Vectors 236-239
VERIFY 204
Verify Command, monitor 256-259,

261
Video Display 18
Video Display, Inverse 116-117
Video Display, reverse 116-117
Visicalc 28
VLIN 89, 107, 163-164, 227-228
Volume Specification 192-193
Volume Specification 192-193, 195
VTAB 164-165

WAIT 165-166
Winchester Disks 171-173
Wordstar 28
Wozniak, Stephen 11
WRITE 219-220, 223-224
Write Command, monitor 259
Write-Enable Notch 178
Write-Protect Notch 178-179

X-Register 267
XDRAW 108, 149, 151, 166-168, 235,

244-246
Y-Register 267

Z80 26

Index 317

Special Characters

40-Column Mode 65-66
6502 Microprocessor 14
6502B Microprocessor 13, 14
80-Column Mode 65-66
80-Column Board 273-283
80-Column Board, activating 274-275
80-Column Board, deactivating

275-276
80-Column Board, selecting 40

columns 276-277
80-Column Board, selecting 80

columns 276-277
80-Column Text Card 14

ABOUT THE
WEBER SYSTEMS, INC. STAFF

In 1982, Weber Systems, Inc. began a start-up publishing divi­
sion specializing in books related to the personal computer field.
They initially published three books, and within a year, expanded
their list to eighteen machine-specific titles, with fourteen more
scheduled for early 1984.

All Weber Systems USER'S HANDBOOKS are created by an
in-house editorial staff with extensive backgrounds in computer
science and technical writing. The three basic tenets of their pub­
lishing philosophy are: quality, timeliness and maintenance (fre­
quent updating).

Weber Systems is located in Cleveland, Ohio.

Other Books in This Series
Published by Ballantine Books

IBM PC® & XT® USER'S HANDBOOK
IBM BASIC® USER'S HANDBOOK
VIC-20® USER'S HANDBOOK
KAYPRO® USER'S HANDBOOK
COMMODORE 64® USER'S HANDBOOK

instructions whidi allow tile use~to maste~ these ca Rabi I ities.

llihe following to12ics are covered

use~ o~ 12otential
of the l.\12RI I le com Ruter.

0

70999 00995

ISBN 0-345-31594-4 Cover printed in USA

	Apple IIe User's Handbook
	Contents
	Introduction
	Chapter 1. Introduction to the Apple IIe
	Chapter 2. Apple IIe Installation, Troubleshooting, and Operation
	Chapter 3. Applesoft BASIC Programming
	Chapter 4. Apple BASIC Reference Guide
	Chapter 5. Cassette and Disk Storage with the Apple IIe
	Chapter 6. Apple IIe Graphics
	Chapter 7. The System Monitor
	Chapter 8. The 80-Column Board
	Appendix A. Applesoft BASIC Reserved Words & Tokens
	Appendix B. Integer BASIC Reserved Words
	Appendix C. DOS Reserved Words
	Appendix D. Applesoft BASIC Error Messages
	Appendix E. Integer BASIC Error Messages
	Appendix F. DOS Error Messages
	Appendix G. ASCII Character Set
	Appendix H. Apple IIe Printer Usage
	Appendix I. Machine Language Subroutines
	Appendix J. Programs on the System Master Diskette
	Index
	About the Weber Systems, Inc. Staff
	Other Books in This Series Published by Ballantine Books

